117 research outputs found

    A multi-epoch VLBI survey of the kinematics of CFJ sources

    Get PDF
    Context. This is the second in a series of papers presenting VLBI observations of the 293 Caltech-Jodrell Bank Flat-spectrum (hereafter CJF) sources and their analysis. Aims. We obtain a consistent motion dataset large enough to allow the systematic properties of the population to be studied. Methods. We present detailed kinematic analysis of the complete flux-density limited CJF survey. We computed 2D kinematic models based on the optimal model-fitting parameters of multi-epoch VLBA observations. This allows us to calculate not only radial, but also orthogonal motions, and thus to study curvature and acceleration. Statistical tests of the motions measured and their reliability were performed. A correlation analysis between the derived apparent motions, luminosities, spectral indices, and core dominance and the resulting consequences is described. Results. With at least one velocity in each of the 237 sources, this sample is much larger than any available before, so it allows a meaningful statistical investigation of apparent motions and any possible correlations with other parameters in AGN jets. The main results to emerge are as follows: - In general motions are not consistent with a single uniform velocity applicable to all components along a jet. - We find a slight trend towards a positive outward acceleration and also adduce some evidence for greater acceleration in the innermost regions. - We find a lack of fast components at physical distances less than a few pc from the reference feature. - Only ~4% of the components from galaxies and <2% of those from quasars undergo large bends i.e. within 15° of ± 90°. - The distribution of radial velocities shows a broad distribution of velocities (apparent velocities up to 30 c). Fifteen percent of the best-sampled jet components exhibit low velocities that may need to be explained in a different manner to the fast motions. - Some negative superluminal motions are seen, and in 15 cases (6%) these are definitely significant. - We find a strong correlation between the 5 GHz luminosity and the apparent velocity. - The CJF galaxies, on average, show slower apparent jet-component velocities than the quasars. - The mean velocity in the VLBA 2 cm survey (Kellermann et al. 2004, ApJ, 609, 539) is substantially higher than in the CJF survey, the ratio could be roughly a factor of 1.5-2. This supports the observed trend toward increasing apparent velocity with increasing observing frequency. Conclusions. This AGN survey provides the basis for any statistical analysis of jet and jet-component properties

    Contrasting Decollement and Prism Properties over the Sumatra 2004-2005 Earthquake Rupture Boundary

    No full text
    Styles of subduction zone deformation and earthquake rupture dynamics are strongly linked, jointly influencing hazard potential. Seismic reflection profiles across the trench west of Sumatra, Indonesia, show differences across the boundary between the major 2004 and 2005 plate interface earthquakes, which exhibited contrasting earthquake rupture and tsunami generation. In the southern part of the 2004 rupture, we interpret a negative-polarity sedimentary reflector ~500 meters above the subducting oceanic basement as the seaward extension of the plate interface. This predécollement reflector corresponds to unusual prism structure, morphology, and seismogenic behavior that are absent along the 2005 rupture zone. Although margins like the 2004 rupture zone are globally rare, our results suggest that sediment properties influence earthquake rupture, tsunami hazard, and prism development at subducting plate boundaries

    Caltech-Jodrell Bank (CJ) VLBI Snapshot Surveys

    Get PDF
    Two large VLBI surveys are currently underway which utilise the snapshot technique pioneered on the VLA. With a 12–16 telescope array three ~ 20 min snapshots are sufficient to make excellent hybrid maps. Recent advances in data analysis techniques enable surveys of several hundred sources to be undertaken and reduced in under two years

    A Multi-Epoch VLBI Survey of the Kinematics of CJF Sources; Part I: Model-Fit Parameters and Maps

    Full text link
    Context: This is the first of a series of papers presenting VLBI observations of the 293 Caltech-Jodrell Bank Flat-Spectrum (hereafter CJF) sources and their analysis. Aims: One of the major goals of the CJF is to make a statistical study of the apparent velocities of the sources. Methods: We have conducted global VLBI and VLBA observations at 5 GHz since 1990, accumulating thirteen separate observing campaigns. Results: We present here an overview of the observations, give details of the data reduction and present the source parameters resulting from a model-fitting procedure. For every source at every observing epoch, an image is shown, built up by restoring the model-fitted components, convolved with the clean beam, into the residual image, which was made by Fourier transforming the visibility data after first subtracting the model-fitted components in the uv-plane. Overplotted we show symbols to represent the model components. Conclusions: We have produced VLBI images of all but 5 of the 293 sources in the complete CJF sample at several epochs and investigated the kinematics of 266 AGN.Comment: Figure 1 and Table 2 are only available in electronic form at the CDS and soon at http://www.mpifr-bonn.mpg.de/staff/sbritzen/cjf.htm

    Wide-Angle Seismic Imaging of Two Modes of Crustal Accretion in Mature Atlantic Ocean Crust

    Get PDF
    We present a high‐resolution 2‐D P‐wave velocity model from a 225‐km‐long active seismic profile, collected over ~60–75 Ma central Atlantic crust. The profile crosses five ridge segments separated by a transform and three nontransform offsets. All ridge discontinuities share similar primary characteristics, independent of the offset. We identify two types of crustal segment. The first displays a classic two‐layer velocity structure with a high gradient Layer 2 (~0.9 s−1^{−1}) above a lower gradient Layer 3 (0.2 s−1^{−1}). Here, PmP coincides with the 7.5 km s−1^{−1} contour, and velocity increases to >7.8 km s−1^{−1} within 1 km below. We interpret these segments as magmatically robust, with PmP representing a petrological boundary between crust and mantle. The second has a reduced contrast in velocity gradient between the upper and lower crust and PmP shallower than the 7.5 km s−1^{−1} contour. We interpret these segments as tectonically dominated, with PmP representing a serpentinized (alteration) front. While velocity‐depth profiles fit within previous envelopes for slow‐spreading crust, our results suggest that such generalizations give a misleading impression of uniformity. We estimate that the two crustal styles are present in equal proportions on the floor of the Atlantic. Within two tectonically dominated segments, we make the first wide‐angle seismic identifications of buried oceanic core complexes in mature (>20 Ma) Atlantic Ocean crust. They have a ~20‐km‐wide “domal” morphology with shallow basement and increased upper crustal velocities. We interpret their midcrustal seismic velocity inversions as alteration and rock‐type assemblage contrasts across crustal‐scale detachment faults
    • 

    corecore