3,644 research outputs found

    Wireless recording of the calls of Rousettus aegyptiacus and their reproduction using electrostatic transducers

    Get PDF
    Bats are capable of imaging their surroundings in great detail using echolocation. To apply similar methods to human engineering systems requires the capability to measure and recreate the signals used, and to understand the processing applied to returning echoes. In this work, the emitted and reflected echolocation signals of Rousettus aegyptiacus are recorded while the bat is in flight, using a wireless sensor mounted on the bat. The sensor is designed to replicate the acoustic gain control which bats are known to use, applying a gain to returning echoes that is dependent on the incurred time delay. Employing this technique allows emitted and reflected echolocation calls, which have a wide dynamic range, to be recorded. The recorded echoes demonstrate the complexity of environment reconstruction using echolocation. The sensor is also used to make accurate recordings of the emitted calls, and these calls are recreated in the laboratory using custom-built wideband electrostatic transducers, allied with a spectral equalization technique. This technique is further demonstrated by recreating multi-harmonic bioinspired FM chirps. The ability to record and accurately synthesize echolocation calls enables the exploitation of biological signals in human engineering systems for sonar, materials characterization and imaging

    Billy Elliot The Musical: visual representations of working-class masculinity and the all-singing, all-dancing bo[d]y

    Get PDF
    According to Cynthia Weber, ‘[d]ance is commonly thought of as liberating, transformative, empowering, transgressive, and even as dangerous’. Yet ballet as a masculine activity still remains a suspect phenomenon. This paper will challenge this claim in relation to Billy Elliot the Musical and its critical reception. The transformation of the visual representation of the human body on stage (from an ephemeral existence to a timeless work of art) will be discussed and analysed vis-a-vis the text and sub-texts of Stephen Daldry’s direction and Peter Darling’s choreography. The dynamics of working-class masculinity will be contextualised within the framework of the family, the older female, the community, the self and the act of dancing itself

    Depth-resolved particle associated microbial respiration in the northeast Atlantic

    Get PDF
    Atmospheric levels of carbon dioxide are tightly linked to the depth at which sinking particulate organic carbon (POC) is remineralised in the ocean. Rapid attenuation of downward POC flux typically occurs in the upper mesopelagic (top few hundred metres of the water column), with much slower loss rates deeper in the ocean. Currently, we lack understanding of the processes that drive POC attenuation, resulting in large uncertainties in the mesopelagic carbon budget. Attempts to balance the POC supply to the mesopelagic with respiration by zooplankton and microbes rarely succeed. Where a balance has been found, depth-resolved estimates reveal large compensating imbalances in the upper and lower mesopelagic. In particular, it has been suggested that respiration by free-living microbes and zooplankton in the upper mesopelagic are too low to explain the observed flux attenuation of POC within this layer. We test the hypothesis that particle-associated microbes contribute significantly to community respiration in the mesopelagic, measuring particle-associated microbial respiration of POC in the northeast Atlantic through shipboard measurements on individual marine snow aggregates collected at depth (36–500 m). We find very low rates of both absolute and carbon-specific particle-associated microbial respiration (< 3 % d−1), suggesting that this term cannot solve imbalances in the upper mesopelagic POC budget. The relative importance of particle-associated microbial respiration increases with depth, accounting for up to 33 % of POC loss in the mid-mesopelagic (128–500 m). We suggest that POC attenuation in the upper mesopelagic (36–128 m) is driven by the transformation of large, fast-sinking particles to smaller, slow-sinking and suspended particles via processes such as zooplankton fragmentation and solubilisation, and that this shift to non-sinking POC may help to explain imbalances in the mesopelagic carbon budget

    Spacelike distance from discrete causal order

    Get PDF
    Any discrete approach to quantum gravity must provide some prescription as to how to deduce continuum properties from the discrete substructure. In the causal set approach it is straightforward to deduce timelike distances, but surprisingly difficult to extract spacelike distances, because of the unique combination of discreteness with local Lorentz invariance in that approach. We propose a number of methods to overcome this difficulty, one of which reproduces the spatial distance between two points in a finite region of Minkowski space. We provide numerical evidence that this definition can be used to define a `spatial nearest neighbor' relation on a causal set, and conjecture that this can be exploited to define the length of `continuous curves' in causal sets which are approximated by curved spacetime. This provides evidence in support of the ``Hauptvermutung'' of causal sets.Comment: 32 pages, 16 figures, revtex4; journal versio

    Approaching the adiabatic timescale with machine-learning

    Full text link
    The control and manipulation of quantum systems without excitation is challenging, due to the complexities in fully modeling such systems accurately and the difficulties in controlling these inherently fragile systems experimentally. For example, while protocols to decompress Bose-Einstein condensates (BEC) faster than the adiabatic timescale (without excitation or loss) have been well developed theoretically, experimental implementations of these protocols have yet to reach speeds faster than the adiabatic timescale. In this work, we experimentally demonstrate an alternative approach based on a machine learning algorithm which makes progress towards this goal. The algorithm is given control of the coupled decompression and transport of a metastable helium condensate, with its performance determined after each experimental iteration by measuring the excitations of the resultant BEC. After each iteration the algorithm adjusts its internal model of the system to create an improved control output for the next iteration. Given sufficient control over the decompression, the algorithm converges to a novel solution that sets the current speed record in relation to the adiabatic timescale, beating out other experimental realizations based on theoretical approaches. This method presents a feasible approach for implementing fast state preparations or transformations in other quantum systems, without requiring a solution to a theoretical model of the system. Implications for fundamental physics and cooling are discussed.Comment: 7 pages main text, 2 pages supporting informatio

    A Bell Inequality Analog in Quantum Measure Theory

    Get PDF
    One obtains Bell's inequalities if one posits a hypothetical joint probability distribution, or {\it measure}, whose marginals yield the probabilities produced by the spin measurements in question. The existence of a joint measure is in turn equivalent to a certain causality condition known as ``screening off''. We show that if one assumes, more generally, a joint {\it quantal measure}, or ``decoherence functional'', one obtains instead an analogous inequality weaker by a factor of 2\sqrt{2}. The proof of this ``Tsirel'son inequality'' is geometrical and rests on the possibility of associating a Hilbert space to any strongly positive quantal measure. These results lead both to a {\it question}: ``Does a joint measure follow from some quantal analog of `screening off'?'', and to the {\it observation} that non-contextual hidden variables are viable in histories-based quantum mechanics, even if they are excluded classically.Comment: 38 pages, TeX. Several changes and added comments to bring out the meaning more clearly. Minor rewording and extra acknowledgements, now closer to published versio

    Measurements of Sunyaev-Zel'dovich Effect Scaling Relations for Clusters of Galaxies

    Full text link
    We present new measurements of the Sunyaev-Zel'dovich (SZ) effect from clusters of galaxies using the Sunyaev-Zel'dovich Infrared Experiment (SuZIE II). We combine these new measurements with previous cluster observations with the SuZIE instrument to form a sample of 15 clusters of galaxies. For this sample we calculate the central Comptonization, y, and the integrated SZ flux decrement, S, for each of our clusters. We find that the integrated SZ flux is a more robust observable derived from our measurements than the central Comptonization due to inadequacies in the spatial modelling of the intra-cluster gas with a standard Beta model. This is highlighted by comparing our central Comptonization results with values calculated from measurements using the BIMA and OVRO interferometers. On average, the SuZIE calculated central Comptonizations are approximately 60% higher in the cooling flow clusters than the interferometric values, compared to only approximately 12% higher in the non-cooling flow clusters. We believe this discrepancy to be in large part due to the spatial modelling of the intra-cluster gas. From our cluster sample we construct y-T and S-T scaling relations. The y-T scaling relation is inconsistent with what we would expect for self-similar clusters; however this result is questionable because of the large systematic uncertainty in the central Comptonization. The S-T scaling relation has a slope and redshift evolution consistent with what we expect for self-similar clusters with a characteristic density that scales with the mean density of the universe. We rule out zero redshift evolution of the S-T relation at 90% confidence.Comment: Accepted to Astrophysical Journal. 52 pages, 14 tables, 7 figures ;replaced to match ApJ accepted versio
    corecore