40 research outputs found

    High-frequency urban measurements of molecular hydrogen and carbon monoxide in the United Kingdom

    Get PDF
    High-frequency measurements of atmospheric molecular hydrogen (H<sub>2</sub>) and carbon monoxide (CO) were made at an urban site in the United Kingdom (UK) from mid-December, 2008 until early March, 2009. Very few measurements of H<sub>2</sub> exist in the urban environment, particularly within the UK, but are an essential component in the assessment of anthropogenic emissions of H<sub>2</sub> and to a certain extent CO. These data provide detailed information on urban time-series, diurnal cycles as well as sources and sinks of both H<sub>2</sub> and CO at urban locations. High-frequency data were found to be strongly influenced by local meteorological conditions of wind speed and temperature. Diurnal cycles were found to follow transport frequency very closely due to the sites proximity to major carriageways, consequently a strong correlation was found between H<sub>2</sub> and CO mole fractions. Background subtracted mean and rush hour molar H<sub>2</sub>/CO emission ratios of 0.53±0.08 and 0.57±0.06 respectively, were calculated from linear fitting of data. The scatter plot of all H<sub>2</sub> and CO data displayed an unusual two population pattern, thought to be associated with a large industrial area 85 km to the west of the site. However, the definitive source of this two branch pattern could not be fully elucidated. H<sub>2</sub> emissions from transport in the UK were estimated to be 188±39 Gg H<sub>2</sub>/yr, with 8.1±2.3 Tg/yr of H<sub>2</sub> produced from vehicle emissions globally. H<sub>2</sub> and CO deposition velocities were calculated during stable night-time inversion events when a clear decay of both species was observed. CO was found to have a much higher deposition velocity than H<sub>2</sub>, 1.3±0.8×10<sup>−3</sup> and 2.2±1.5×10<sup>−4</sup> m s<sup>−1</sup> (1σ) respectively, going against the law of molecular diffusivity. The source of this unusual result was investigated, however no conclusive explanation was found for increased loss of CO over H<sub>2</sub> during stable night time inversion events

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure
    corecore