40 research outputs found

    Perfect synchronization in networks of phase-frustrated oscillators

    Full text link
    Synchronizing phase frustrated Kuramoto oscillators, a challenge that has found applications from neuronal networks to the power grid, is an eluding problem, as even small phase-lags cause the oscillators to avoid synchronization. Here we show, constructively, how to strategically select the optimal frequency set, capturing the natural frequencies of all oscillators, for a given network and phase-lags, that will ensure perfect synchronization. We find that high levels of synchronization are sustained in the vicinity of the optimal set, allowing for some level of deviation in the frequencies without significant degradation of synchronization. Demonstrating our results on first and second order phase-frustrated Kuramoto dynamics, we implement them on both model and real power grid networks, showing how to achieve synchronization in a phase frustrated environment.Comment: To appear in Europhysics Letters, 7 pages, supplementary informatio

    Controlling species densities in structurally perturbed intransitive cycles with higher-order interactions

    Full text link
    The persistence of biodiversity of species is a challenging proposition in ecological communities in the face of Darwinian selection. The present article investigates beyond the pairwise competitive interactions and provides a novel perspective for understanding the influence of higher-order interactions on the evolution of social phenotypes. Our simple model yields a prosperous outlook to demonstrate the impact of perturbations on intransitive competitive higher-order interactions. Using a mathematical technique, we show how alone the perturbed interaction network can quickly determine the coexistence equilibrium of competing species instead of solving a large system of ordinary differential equations. It is possible to split the system into multiple feasible cluster states depending on the number of perturbations. Our analysis also reveals the ratio between the unperturbed and perturbed species is inversely proportional to the amount of employed perturbation. Our results suggest that nonlinear dynamical systems and interaction topologies can be interplayed to comprehend species' coexistence under adverse conditions. Particularly our findings signify that less competition between two species increases their abundance and outperforms others.Comment: 17 pages, 10 figure

    Interlayer antisynchronization in degree-biased duplex networks

    Full text link
    With synchronization being one of nature's most ubiquitous collective behaviors, the field of network synchronization has experienced tremendous growth, leading to significant theoretical developments. However, most of these previous studies consider uniform connection weights and undirected networks with positive coupling. In the present article, we incorporate the asymmetry in a two-layer multiplex network by assigning the ratio of the adjacent nodes' degrees as the weights to the intralayer edges. Despite the presence of degree-biased weighting mechanism and attractive-repulsive coupling strengths, we are able to find the necessary conditions for intralayer synchronization and interlayer antisynchronization and test whether these two macroscopic states can withstand demultiplexing in a network. During the occurrence of these two states, we analytically calculate the oscillator's amplitude. In addition to deriving the local stability conditions for interlayer antisynchronization via the master stability function approach, we also construct a suitable Lyapunov function to determine a sufficient condition for global stability. We provide numerical evidence to show the necessity of negative interlayer coupling strength for the occurrence of antisynchronization, and such repulsive interlayer coupling coefficients can not destroy intralayer synchronization.Comment: 16 pages, 5 figures (Accepted for publication in the journal Physical Review E
    corecore