3 research outputs found

    Detecting changes in Labrador Sea Water through a water mass analysis of BATS data

    Get PDF
    A new water mass analysis technique is used to analyse the BATS oceanographic data set in the Sargasso Sea of 1988–1998 for changes in Labrador Sea Water (LSW) properties. The technique is based on a sequential quadratic programming method and requires careful definition of constraints to produce reliable results. Variations in LSW temperature and salinity observed in the Labrador Sea are used to define the constraints. It is shown that to minimize the residuals while matching the observed temperature and salinity changes in the source region the nitrate concentration in the Labrador Sea has to be allowed to vary as well. It is concluded that during the period of investigation nitrate underwent significant variations in the Labrador Sea

    Remote detection of water property changes from a time series of oceanographic data

    Get PDF
    A water mass analysis method based on a constrained minimization technique is developed to derive water property changes in water mass formation regions from oceanographic station data taken at significant distance from the formation regions. The method is tested with two synthetic data sets, designed to mirror conditions in the North Atlantic at the Bermuda BATS time series station. <br /><br /> The method requires careful definition of constraints before it produces reliable results. It is shown that an analysis of the error fields under different constraint assumptions can identify which properties vary most over the period of the observations. The method reproduces the synthetic data sets extremely well if all properties other than those that are identified as undergoing significant variations are held constant during the minimization
    corecore