96 research outputs found

    Faster hpredict.exe

    Get PDF

    First-Principles Studies of Local Order in Relaxor Ferroelectrics

    Full text link
    A key to optimizing the growth of the new single-crystal relaxor ferroelectrics is resolving basic questions concerning their structural properties and energetics. We report on initial first-principles total energy and force calculations, examining the energetics of local order in PZN type relaxors.Comment: 9 pages, LaTeX (aipproc), three eps figure

    Auxiliary-field quantum Monte Carlo study of first- and second-row post-d elements

    Get PDF
    A series of calculations for the first- and second-row post-d elements (Ga-Br and In-I) are presented using the phaseless auxiliary-field quantum Monte Carlo (AF QMC) method. This method is formulated in a Hilbert space defined by any chosen one-particle basis, and maps the many-body problem into a linear combination of independent-particle solutions with external auxiliary fields. The phase/sign problem is handled approximately by the phaseless formalism using a trial wave function, which in our calculations was chosen to be the Hartree-Fock solution. We used the consistent correlated basis sets of Peterson and coworkers, which employ a small core relativistic pseudopotential. The AF QMC results are compared with experiment and with those from density-functional (GGA and B3LYP) and coupled-cluster CCSD(T) calculations. The AF QMC total energies agree with CCSD(T) to within a few milli-hartrees across the systems and over several basis sets. The calculated atomic electron affinities, ionization energies, and spectroscopic properties of dimers are, at large basis sets, in excellent agreement with experiment.Comment: 10 pages, 2 figures. To be published in Journal of Chemical Physic

    Electron-phonon coupling and exchange-correlation effects in superconducting H3S under high pressure

    Get PDF
    We investigate the H3S phase of sulfur hydride under high pressure similar or equal to 200 GPa by means of ab initio calculations within the framework of the density-functional theory with the PBE0 hybrid exchange-correlation (E-xc) approximation. The choice of E-xc has the largest effect on the calculated electron-phonon coupling (EPC) matrix elements; the high-pressure equation of state and phonon frequencies are only slightly modified. Mode-dependent EPC correction factors are determined from PBE0 using a frozen-phonon supercell approach, while standard density-functional perturbation theory is used to determine the EPC with PBE generalized-gradient approximation E-xc. Our principle finding is that the calculated PBE0 T-c is enhanced by 25% compared to PBE. This is similar in magnitude, but in opposite direction, to the proposed suppression of T-c by anharmonic effects [I. Errea et al., Phys. Rev. Lett. 114, 157004 (2015)]. Our calculations demonstrate the importance of considering exchange-correlation approximations for calculations of superconducting properties for this class of materials
    corecore