424 research outputs found

    Ocean rises are products of variable mantle composition, temperature and focused melting

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 8 (2015): 68-74, doi:10.1038/ngeo2318.Ocean ridges, where Earth’s tectonic plates are pulled apart, vary from more than 5- km depth in the Arctic to 750 m above sea level in Iceland. This huge relief is generally attributed to mantle plumes underlying mantle hotspots, areas of enormous volcanism marked by ocean islands. The plumes are thought to feed the mantle beneath adjacent ocean ridges. This results in thickened crust and ridge elevation to form ocean rises. The composition of mid-ocean ridge basalt, a direct function of mantle composition and temperature, varies systematically up ocean rises, but in a unique way for each rise. Here we present thermodynamic calculations of melt-evolution pathways to show that variations in both mantle temperature and source composition are required to explain rise basalts. Thus, lateral gradients in mantle temperature cannot be uniquely determined from basalt chemistry, and ocean rises can be supported by chemically buoyant mantle and/or by robust mantle plumes. Our calculations also indicate that melt is conserved and focused by percolative flow towards the overlying ridge, progressively interacting with the mantle to shallow depth. We conclude that most mantle melting occurs by an overlooked mechanism, focused melting, whereas fractional melting is a secondary process that is important largely at shallow depth.The National Science Foundation funded HJBD (NSF/OCE 08.0278.025). HZ would like to acknowledge the support of the Chinese National Key Basic Research Program (2012CB417300), China Ocean Mineral Resources Research and Development Association.2015-06-2

    Description of W.H.O.I. rock dredge samples : volume 3

    Get PDF
    This report is Volume III of DESCRIPTIONS OF WHOI ROCK DREDGE SAMPLES. This series represents a major effort to catalog the rock dredge samples in the WHOI Sea Floor Samples collection, and to disseminate this information throughout the scientific community. Volume III contains sample descriptions and station data for the dredge stations from five cruises during the period September 1978 through December 1980. The material in this and subsequent volumes of rock descriptions was largely prepared onboard ship by the participating scientists. Volumes I and II are now being prepared by the WHOI Curatorial staff, and describe material in the rock collection obtained prior to 1978. Volume III is being printed prior to volumes I and II because of the excellent documentation of the samples represented in this volume, and because more effort remains in documenting the samples obtained on some of the older cruises. We expect that volumes I and II will be printed and distributed with in the next year.Prepared for the National Science Foundation under Grant OCE 78-25231

    Correction to “Noble gas signatures of abyssal gabbros and peridotites at an Indian Ocean core complex”

    Get PDF
    Author Posting. © American Geophysical Union 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q02010, doi:10.1029/2004GC000695

    Cemented mounds and hydrothermal sediments on the detachment surface at Kane Megamullion : a new manifestation of hydrothermal venting

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 3352–3378, doi:10.1002/ggge.20186.Long-lived detachment faults are now known to be important in tectonic evolution of slow-spreading mid-ocean ridges, and there is increasing evidence that fluid flow plays a critical role in development of detachment systems. Here we document a new manifestation of low-temperature hydrothermal venting associated with the detachment fault that formed Kane Megamullion ∼3.3–2.1 m.y. ago in the western rift-valley wall of the Mid-Atlantic Ridge. Hydrothermal effects on the detachment surface include (1) cemented mounds of igneous rock and chalk debris containing hydrothermal Mn oxides and Fe oxyhydroxides, and (2) layered deposits of similar Fe-Mn minerals ± interbedded chalks. Mounds are roughly conical, ∼1–10 m high, and contain primarily basalts with lesser gabbro, serpentinite, and polymict breccia. The layered Fe-Mn-rich sediments are flat-bedded to contorted and locally are buckled into low-relief linear or polygonal ridges. We propose that the mounds formed where hydrothermal fluids discharged through the detachment hanging wall near the active fault trace. Hydrothermal precipitates cemented hanging-wall debris and welded it to the footwall, and this debris persisted as mounds as the footwall was exhumed and surrounding unconsolidated material sloughed off the sloping detachment surface. Some of the layered Fe-Mn-rich deposits may have precipitated from fluids discharging from the hanging-wall vents, but they also precipitated from low-temperature fluids venting from the exposed footwall through overlying chalks. Observed natural disturbance and abnormally thin hydrogenous Fe-Mn crusts on some contorted, hydrothermal Fe-Mn-rich chalks on ∼2.7 Ma crust suggest diffuse venting that is geologically recent. Results of this study imply that there are significant fluid pathways through all parts of detachment systems and that low-temperature venting through fractured detachment footwalls may continue for several million years off-axis.NSF grant 0118445 supported data acquisition and processing for Knorr Cruise 180- 2. The Deep Ocean Exploration Institute at Woods Hole Oceanographic Institution supported research and analytical costs for this study.2014-03-0

    Southwest Indian Ridge lower crust and Moho: the nature of the lower crust and Moho at slower spreading ridges (SloMo-Leg 1)

    Get PDF
    International Ocean Discovery Program (IODP) Expedition 360 will form the first leg of a multiphase drilling project that aims to drill through the crust/mantle boundary at the ultraslow-spreading Southwest Indian Ridge and investigate the nature of the Mohorovičić seismic discontinuity (Moho). Expedition 360 is expected to drill ~1300 m into lower crustal gabbro and is unlikely to penetrate the crust–mantle transition or recover a significant amount of peridotite. Drilling will be sited at Atlantis Bank, on an elevated wave-cut platform on the east flank of the Atlantis II Transform. Previous drilling and mapping shows that Atlantis Bank is a large oceanic core complex, exposing a tectonic window of deep crustal and lithospheric mantle exhumed on the footwall of an oceanic detachment fault. The shallowest part of Atlantis Bank, at 700 m water depth, consists of a ~25 km2 wave-cut platform rimmed by a thin bioclastic limestone cap. The platform is part of a continuous gabbro massif ~40 km long by 30 km wide, overlying granular mantle peridotite that forms the lower slopes of the eastern wall of the Atlantis II Transform. Mapping shows that basement on the wave-cut platform consists largely of shallow-dipping amphibolitized gabbro mylonite generated by detachment faulting. This fault rooted near-continuously into partially crystalline gabbro for >4 million years. The mylonite exposed on the platform, and by cross-faulting and landslips on the sides of Atlantis Bank, both cut and are cut by steeply north dipping greenschist-facies diabase dikes. Thus, the gabbro crystallized at depth was uplifted into the zone of diking at the ridge axis, creating, in effect, the equivalent to the base of a dike–gabbro transition seen in many ophiolites. Previous Ocean Drilling Program (ODP) operations at Atlantis Bank drilled the 1508 m deep Hole 735B and 150 m deep Hole 1105A, both recovering long sections of gabbro. During Expedition 360, we propose to drill to a nominal depth of 1.3 km at a site on the northern edge of the Atlantis Bank platform, ~1 km north-northeast of Hole 1105A and ~2 km northeast of Hole 735B. A future drilling expedition, SloMo-Leg 2, aims to deepen the hole to ~3 km, with the overall goal of penetrating the crust–mantle transition, which is believed to be ~2.5 km above the seismically determined Moho. Specific objectives of Expedition 360 include establishing the lateral continuity of the igneous, metamorphic, and structural stratigraphies previously drilled to the southwest, testing the nature of a magnetic polarity transition, and investigating the biogeochemistry of the lower crust.Funding for the program is provided by the following international partners and implementing organizations: National Science Foundation (NSF), United States Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan European Consortium for Ocean Research Drilling (ECORD) Ministry of Science and Technology (MOST), People’s Republic of China Korea Institute of Geoscience and Mineral Resources (KIGAM) Australian Research Council (ARC) and GNS Science (New Zealand), Australian/New Zealand Consortium (ANZIC) Ministry of Earth Sciences (MoES), India Coordination for Improvement of Higher Education Personnel, Brazi

    Isotope and trace element insights into heterogeneity of subridge mantle

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 2438–2453, doi:10.1002/2014GC005314.Geochemical data for abyssal peridotites are used to determine the relationship to mid-ocean ridge basalts from several locations at ridge segments on the SW Indian Ridge (SWIR), the Mid-Cayman-Rise (MCR), and the Mid-Atlantic Ridge (MAR). Based on chemical and petrological criteria peridotites are categorized as being either dominantly impregnated with melt or being residual after recent melting. Those that are considered impregnated with melt also have isotopic compositions similar to the basalts indicating impregnation by an aggregate MORB melt. A SWIR and MCR residual peridotite Nd-isotopic compositions partly overlap the Nd-isotopic compositions of the basalts but extend to more radiogenic compositions. The differences between peridotite and basalt Nd-isotopic compositions can be explained by incorporating a low-solidus component with enriched isotopic signature in the subridge mantle: a component that is preferentially sampled by the basalts. At the MAR, peridotites and associated basalts have overlapping Nd-isotopic compositions, suggesting a more homogeneous MORB mantle. The combined chemistry and petrography indicates a complex history with several depletion and enrichment events. The MCR data indicate that a low-solidus component can be a ubiquitous component of the asthenosphere. Residual abyssal peridotites from limited geographic areas also show significant chemical variations that could be associated with initial mantle heterogeneities related to events predating the ridge-melting event. Sm-Nd model ages for possible earlier depletion events suggest these could be as old as 2.4 Ga.The research was supported by NSF grants OCE 0241053 and OCE 0930429 to Salters and OCE 0827825 to Dick.2014-12-1

    Silica-rich vein formation in an evolving stress field, Atlantis Bank Oceanic Core Complex

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ma, Q., Dick, H. J. B., Urann, B., & Zhou, H. Silica-rich vein formation in an evolving stress field, Atlantis Bank Oceanic Core Complex. Geochemistry Geophysics Geosystems, 21(7), (2020): e2019GC008795, doi:10.1029/2019GC008795.Drilling 809‐m Hole U1473A in the gabbro batholith at the Atlantis Bank Oceanic Core Complex (OCC) found two felsic vein generations: late magmatic fractionates, rich in deuteric water, hosted by oxide gabbros, and anatectic veins associated with dike intrusion and introduction of seawater‐derived volatiles. Microtextures show a change from compressional to tensional stress during vein formation. Temperatures and oxidation state were obtained from amphibole‐plagioclase and oxide pairs in the adjacent gabbros. Type I veins generally have reverse shear‐sense, with restricted ΔFMQ, high Mt/Ilm ratios, and low‐amphibole Cl/F indicating deuteric fluids. They formed during percolation and fractionation of Fe‐Ti‐rich melts into the primary olivine gabbro. Type II veins are usually hosted by olivine gabbro, occur at dike contacts and the margins of normal‐sense shear zones. They are undeformed or weakly deformed, with highly variable ΔFMQ, low Mt/Ilm ratios, and high‐amphibole Cl/F, indicating seawater‐derived fluids. The detachment fault on which the gabbro massif was emplaced rooted near the base of the dike‐gabbro transition beneath the rift valley. The ingress of seawater volatiles began at >800°C and penetrated at least ~590 m into the lower crust during extensional faulting in the rift valley and adjacent rift mountains. The sequence of the felsic vein formation likely reflects asymmetric diapiric flow, with a reversal of the stress regime, and a transition from juvenile to seawater‐derived volatiles. This, in turn, is consistent with fault capture leading to the large asymmetries in spreading rates during OCC formations and heat flow beneath the rift mountains.This study was supported by the Chinese National Key Basic Research Program (Grant 2012CB417300). H. Dick and B. Urann were supported by U.S. National Science Foundation (Grant OCE‐MG&G 8371300). Emmanuel Codillo provided numerous useful comments and moral support. We thank N. Chatterjee for assistance in analyzing major element mineral composition in the MIT Electron Microprobe Laboratory. The great contributions of 360 Scientific Party for their initial shipboard description and interpretations of the Hole U1473A cores made this work possible. Special thanks go to C. J. MacLeod, Expedition cochief scientist, and Peter Blum, staff scientist, Stephen Midgley, IODP operations superintendent, and Siem Offshore James Samuel McLelland, offshore installation manager, ship's master Terry Skinner, and the crew and drillers on the JOIDES Resolution

    Recycled arc mantle recovered from the Mid-Atlantic Ridge

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Urann, B. M., Dick, H. J. B., Parnell-Turner, R., & Casey, J. F. Recycled arc mantle recovered from the Mid-Atlantic Ridge. Nature Communications, 11(1), (2020): 3887, doi:10.1038/s41467-020-17604-8.Plate tectonics and mantle dynamics necessitate mantle recycling throughout Earth’s history, yet direct geochemical evidence for mantle reprocessing remains elusive. Here we present evidence of recycled supra-subduction zone mantle wedge peridotite dredged from the Mid-Atlantic Ridge near 16°30′N. Peridotite trace-element characteristics are inconsistent with fractional anhydrous melting typically associated with a mid-ocean ridge setting. Instead, the samples are best explained by hydrous flux melting which changed the melting reactions such that clinopyroxene was not exhausted at high degrees of melting and was retained in the residuum. Based on along-axis ridge depth variations, this buoyant refractory arc mantle is likely compensated at depth by denser, likely garnet-rich, lithologies within the mantle column. Our results suggest that highly refractory arc mantle relicts are entrained in the upper mantle and may constitute >60% of the upper mantle by volume. These highly refractory mantle domains, which contribute little to mantle melting, are under-represented in compilations of mantle composition that rely on inverted basalt compositions alone.We thank the science party for their dutiful collection and description of dredge samples, and in particular chief scientist Dr. Deborah K. Smith. Analysis work for this research was supported by an internal grant from the MIT EAPS Student Research Fund to BMU. Urann was supported by the Stanley W. Watson Student Fellowship Fund based at WHOI. Dick and Urann were supported by NSF OCE-1637130 and OCE-1155650. Dr. Yongjun Gao is thanked for conducting LA-ICP-MS trace elements analyses

    An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): B12203, doi:10.1029/2008JB006186.Abyssal peridotites, the depleted solid residues of ocean ridge melting, are the most direct samples available to assess upper oceanic mantle composition. We present detailed isotope and trace element analyses of pyroxene mineral separates from Southwest Indian Ridge abyssal peridotites and pyroxenites in order to constrain the size and length scale of mantle heterogeneity. Our results demonstrate that the mantle can be highly heterogeneous to <1 km and even <0.1 m length scales. Examination of Nd isotopes in relation to modal, trace, and major element compositions indicate that the length scales and amplitudes of heterogeneities in abyssal peridotites reflect both ancient mantle heterogeneity and recent modification by melting, melt-rock reaction and melt crystallization. The isotopic and trace element compositions of pyroxenite veins in this study indicate that they are not direct remnants of recycled oceanic crust, but instead are formed by recent melt crystallization. Combined with existing data sets, the results show that the average global isotopic composition of peridotites is similar to that of mid-ocean ridge basalts, though peridotites extend to significantly more depleted 143Nd/144Nd and 87Sr/86Sr. Standard isotope evolution models of upper mantle composition do not predict the full isotopic range observed among abyssal peridotites, as they do not account adequately for the complexities of ancient and recent melting processes.This research was supported by WHOI Academic Programs funding to J.M.W; EAR0115433 and EAR0106578 to N.S; OCE9907630, OCE0526905, and OPP0425785 to H.J.B.D; and COE-21 funding to E.N

    Nonvolcanic seafloor spreading and corner-flow rotation accommodated by extensional faulting at 15°N on the Mid-Atlantic Ridge : a structural synthesis of ODP Leg 209

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q06015, doi:10.1029/2006GC001567.Drilling during ODP Leg 209, dredging, and submersible dives have delineated an anomalous stretch of the Mid-Atlantic Ridge north and south of the 15°20′N Fracture Zone. The seafloor here consists dominantly of mantle peridotite with gabbroic intrusions that in places is covered by a thin, discontinuous extrusive volcanic layer. Thick lithosphere (10–20 km) in this region inhibits magma from reaching shallow levels beneath the ridge axis, thereby causing plate accretion to be accommodated by extensional faulting rather than magmatism. The bathymetry and complex fault relations in the drill-core suggest that mantle denudation and spreading are accommodated by a combination of high-displacement, rolling-hinge normal faults and secondary lower-displacement normal faults. These extensional faults must also accommodate corner flow rotation (up to 90°) of the upwelling mantle within the shallow lithosphere, consistent with remnant magnetic inclinations in denuded peridotite and gabbro from Leg 209 core that indicate up to 90° of sub-Curie-temperature rotation.This work was funded by a grant from the Joint Oceanographic Institutions
    corecore