15 research outputs found

    HIVE: A Space Architecture Concept

    Get PDF
    The increasing number of spacefaring nations and agendas, miniaturization of subsystems, and trend toward integrated systems are no doubt influencing the evolution of space systems. The diversification of space architectures has surged at an unprecedented rate in recent history with initial deployments of planned mega-constellations. This paper explores HIVE-a reconfigurable small satellite system primed to revolutionize the concept of modular space systems and future space architectures. Based on a mass producible functioning unit consisting of nested rings, HIVE is a comprehensive satellite design harnessing advancement in robotics, software and machine learning, precision scale manufacturing, and novel materials with multifunctional properties. HIVE is addressing solutions for detailed design of interconnected hardware, engineering analysis for multi-payload applications, and policy to accomplish modularized, in-space deployment and reconfiguration. The HIVE unit design lends itself to the “infinite possibilities” of space mission architectures and presents a revolutionary way to design, integrate, and operate missions from space. This paper provides and overview of the HIVE concept development and provides examples of applications for HIVE to showcase the range of possible systems and architectural advantages; such as space domain awareness, large service structure, and planetary surface infrastructure. Finally, we will discuss technology transfer and possible pathways to making a resilient, adaptable, and continually upgradable space infrastructure a reality

    Miniature Incandescent Lamps as Fiber-Optic Light Sources

    Get PDF
    Miniature incandescent lamps of a special type have been invented to satisfy a need for compact, rapid-response, rugged, broadband, power-efficient, fiber-optic-coupled light sources for diverse purposes that could include calibrating spectrometers, interrogating optical sensors, spot illumination, and spot heating

    Ultraminiature broadband light source with spiral shaped filament

    Get PDF
    An ultraminiature light source using a double-spiral shaped tungsten filament includes end contact portions which are separated to allow for radial and length-wise unwinding of the spiral. The double-spiral filament is spaced relatively far apart at the end portions thereof so that contact between portions of the filament upon expansion is avoided. The light source is made by fabricating a double-spiral ultraminiature tungsten filament from tungsten foil and housing the filament in a ceramic package having a reflective bottom and a well wherein the filament is suspended. A vacuum furnace brazing process attaches the filament to contacts of the ceramic package. Finally, a cover with a transparent window is attached onto the top of the ceramic package by solder reflow in a second vacuum furnace process to form a complete hermetically sealed package

    Ultraminiature Broadband Light Source and Method of Manufacturing Same

    Get PDF
    An ultraminiature light source using a double-spiral shaped tungsten filament includes end contact portions which are separated to allow for radial and length-wise unwinding of the spiral. The double-spiral filament is spaced relatively far apart at the end portions thereof so that contact between portions of the filament upon expansion is avoided. The light ource is made by fabricating a double-spiral ultraminiature tungsten filament from tungsten foil and housing the filament in a ceramic package having a reflective bottom and a well wherein the filament is suspended. A vacuum furnace brazing process attaches the filament to contacts of the ceramic package. Finally, a cover with a transparent window is attached onto the top of the ceramic package by solder reflow in a second vacuum furnace process to form a complete hermetically sealed package

    Direct Multipixel Imaging and Spectroscopy of an Exoplanet with a Solar Gravity Lens Mission

    Get PDF
    We examined the solar gravitational lens (SGL) as the means to produce direct high-resolution, multipixel images of exoplanets. The properties of the SGL are remarkable: it offers maximum light amplification of ~1e11 and angular resolution of ~1e-10 arcsec. A probe with a 1-m telescope in the SGL focal region can image an exoplanet at 30 pc with 10-kilometer resolution on its surface, sufficient to observe seasonal changes, oceans, continents, surface topography. We reached and exceeded all objectives set for our study: We developed a new wave-optical approach to study the imaging of exoplanets while treating them as extended, resolved, faint sources at large but finite distances. We properly accounted for the solar corona brightness. We developed deconvolution algorithms and demonstrated the feasibility of high-quality image reconstruction under realistic conditions. We have proven that multipixel imaging and spectroscopy of exoplanets with the SGL are feasible. We have developed a new mission concept that delivers an array of optical telescopes to the SGL focal region relying on three innovations: i) a new way to enable direct exoplanet imaging, ii) use of smallsats solar sails fast transit through the solar system and beyond, iii) an open architecture to take advantage of swarm technology. This approach enables entirely new missions, providing a great leap in capabilities for NASA and the greater aerospace community. Our results are encouraging as they lead to a realistic design for a mission that will be able to make direct resolved images of exoplanets in our stellar neighborhood. It could allow exploration of exoplanets relying on the SGL capabilities decades, if not centuries, earlier than possible with other extant technologies. The architecture and mission concepts for a mission to the strong interference region of the SGL are promising and should be explored further

    Direct Multipixel Imaging and Spectroscopy of an Exoplant with a Solar Gravity Lens Mission

    Get PDF
    We report here on the results of our initial study of a mission to the deep outer regions of our solar system, with the primary mission objective of conducting direct megapixel high-resolution imag- ing and spectroscopy of a potentially habitable exoplanet by exploiting the remarkable optical properties of the SGL. Our main goal was not to study how to get there (although this was also addressed), but rather, to investigate what it takes to operate spacecraft at such enormous distances with the needed precision. Specifically, we studied i) how a space mission to the focal region of the SGL may be used to obtain high-resolution direct imaging and spectroscopy of an exoplanet by detecting, tracking, and studying the Einstein ring around the Sun, and ii) how such information could be used to detect signs of life on another planet

    >

    No full text
    corecore