9,662 research outputs found

    Ga+ beam lithography for suspended lateral beams and nanowires

    Get PDF
    The authors demonstrate the fabrication of suspended nanowires and doubly clamped beams by using a focused ion beam implanted Ga etch mask followed by an inductively coupled plasma reactive ion etching of silicon. This method will demonstrate how a two-step, completely dry fabrication sequence can be tuned to generate nanomechanical structures on either silicon substrates or silicon on insulator (SOI). This method was used to generate lateral nanowires suspended between 2 µm scaled structures with lengths up to 16 µm and widths down to 40 nm on a silicon substrate. The authors also fabricate 10 µm long doubly clamped beams on SOIs that are 20 nm thick and a minimum of 150 nm wide. In situ electrical measurements of the beams demonstrate a reduction of resistivity from > 37.5 Ω cm down to 0.25 Ω cm. Transmission electron microscopy for quantifying both surface roughness and crystallinity of the suspended nanowires was performed. Finally, a dose array for repeatable fabrication of a desired beam width was also experimentally determined

    ICP Etching of Silicon for Micro and Nanoscale Devices

    Get PDF
    The physical structuring of silicon is one of the cornerstones of modern microelectronics and integrated circuits. Typical structuring of silicon requires generating a plasma to chemically or physically etch silicon. Although many tools have been created to do this, the most finely honed tool is the Inductively Couple Plasma Reactive Ion Etcher. This tool has the ability to finesse structures from silicon unachievable on other machines. Extracting structures such as high aspect ratio silicon nanowires requires more than just this tool, however. It requires etch masks which can adequately protect the silicon without interacting with the etching plasma and highly tuned etch chemistry able to protect the silicon structures during the etching process. In the work presented here, three highly tuned etches for silicon, and its oxide, will be described in detail. The etches presented utilize a type of etch chemistry which provides passivation while simultaneously etching, thus permitting silicon structures previously unattainable. To cover the range of applications, one etch is tuned for deep reactive ion etching of high aspect ratio micro-structures in silicon, while another is tuned for high aspect ratio nanoscale structures. The third etch described is tuned for creating structures in silicon dioxide. Following the description of these etches, two etch masks for silicon will be described. The first mask will detail a highly selective etch mask uniquely capable of protecting silicon for both etches described while being compatible with mainstream semiconductor fabrication facilities. This mask is aluminum oxide. The second mask detailed permits for a completely dry lithography on the micro and nanoscale, FIB implanted Ga etch masks. The third chapter will describe the fabrication and in situ electrical testing of silicon nanowires and nanopillars created using the methods previously described. A unique method for contacting these nanowires is also described which has enabled investigation into the world of nanoelectronics. The fourth and final chapter will detail the design and construction of high magnetic fields and integrated planar microcoils, work which was enabled by the etching detailed here. This research was directed towards creation of a portable NMR machine.</p

    Automated precision alignment of optical components for hydroxide catalysis bonding

    Get PDF
    We describe an interferometric system that can measure the alignment and separation of a polished face of a optical component and an adjacent polished surface. Accuracies achieved are ∼ 1μrad for the relative angles in two orthogonal directions and ∼ 30μm in separation. We describe the use of this readout system to automate the process of hydroxide catalysis bonding of a fused-silica component to a fused-silica baseplate. The complete alignment and bonding sequence was typically achieved in a timescale of a few minutes, followed by an initial cure of 10 minutes. A series of bonds were performed using two fluids - a simple sodium hydroxide solution and a sodium hydroxide solution with some sodium silicate solution added. In each case we achieved final bonded component angular alignment within 10 μrad and position in the critical direction within 4 μm of the planned targets. The small movements of the component during the initial bonding and curing phases were monitored. The bonds made using the sodium silicate mixture achieved their final bonded alignment over a period of ∼ 15 hours. Bonds using the simple sodium hydroxide solution achieved their final alignment in a much shorter time of a few minutes. The automated system promises to speed the manufacture of precision-aligned assemblies using hydroxide catalysis bonding by more than an order of magnitude over the more manual approach used to build the optical interferometer at the heart of the recent ESA LISA Pathfinder technology demonstrator mission. This novel approach will be key to the time-efficient and low-risk manufacture of the complex optical systems needed for the forthcoming ESA spaceborne gravitational waves observatory mission, provisionally named LISA

    Characterization of low-noise quasi-optical SIS mixers for the submillimeter band

    Get PDF
    We report on the development of low-noise quasi-optical SIS mixers for the frequency range 400-850 GHz. The mixers utilize twin-slot antennas, two-junction tuning circuits, and Nb-trilayer junctions. Fourier-transform spectrometry has been used to verify that the frequency response of the devices is well predicted by computer simulations. The 400-850 GHz frequency band can be covered with four separate fixed-tuned mixers. We measure uncorrected double-sideband receiver noise temperatures around 5hν/kB to 700 GHz, and better than 540 K at 808 GHz. These results are among the best reported to date for broadband heterodyne receivers

    Trends and uptake of new formulations of controlled-release oxycodone in Canada

    Get PDF
    Purpose: This study investigated the impact of changing availability of tamper‐deterrent and non‐tamper‐deterrent oxycodone on prescribing patterns of controlled‐release oxycodone across Canada. Methods: We conducted a population‐based, serial cross‐sectional study of controlled‐release oxycodone dispensing from community pharmacies across Canada between October 2007 and April 2016. We calculated rates of dispensing (tablets per 100 population) and reported the relative market share of generic non‐tamper‐deterrent controlled‐release oxycodone. All analyses were reported nationally and stratified by province. Results: After the introduction of a tamper‐deterrent formulation, the national rate of controlled‐release oxycodone dispensing fell by 44.6% (from 26.4 to 14.6 tablets per 100 population from February 2012 to April 2016). Between December 2012 and July 2013, there was moderate uptake of generic non‐tamper‐deterrent controlled‐release oxycodone (968 452 tablets; 16.0% in July 2013), which appeared to have little impact on the overall rate of controlled‐release oxycodone dispensing in Canada. However, the uptake of generic non‐tamper‐deterrent oxycodone varied considerably by province. By April 2016, 55.0% of all controlled‐release oxycodone tablets dispensed in Quebec were for the generic formulation. […

    G3-RAD and G3X-RAD: Modified Gaussian-3 (G3) and Gaussian-3X (G3X) procedures for radical thermochemistry

    No full text
    The G3-RAD, G3X-RAD, G3(MP2)-RAD, and G3X(MP2)-RAD, procedures, designed particularly for the prediction of reliable thermochemistry for free radicals, are formulated and their performance assessed using the G2/97 test set. The principal features of the RAD procedures include (a) the use of B3-LYP geometries and vibrational frequencies (in place of UHF and UMP2), including the scaling of vibrational frequencies so as to reproduce ZPVEs, (b) the use of URCCSD(T) [in place of UQCISD(T)] as the highest-level correlation procedure, and (c) the use of RMP (in place of UMP) to approximate basis-set-extension effects. G3-RAD and G3X-RAD are found to perform well overall with mean absolute deviations (MADs) from experiment of 3.96 and 3.65 kJ mol⁻¹, respectively, compared with 4.26 and 4.02 kJ mol⁻¹ for standard G3 and G3X. G3-RAD and G3X-RAD successfully predict heats of formation with MADs of 3.68 and 3.11 kJ mol⁻¹, respectively (compared with 3.93 and 3.60 kJ mol⁻¹ for standard G3 and G3X), and perform particularly well for radicals with MADs of 2.59 and 2.50 kJ mol⁻¹, respectively (compared with 3.51 and 3.18 kJ mol⁻¹ for standard G3 and G3X). The G3(MP2)-RAD and G3X(MP2)-RAD procedures give acceptable overall performance with mean absolute deviations from experiment of 5.17 and 4.92 kJ mol⁻¹, respectively, compared with 5.44 and 5.23 kJ mol⁻¹ for standard G3(MP2) and G3X(MP2). G3(MP2)-RAD and G3X(MP2)-RAD give improved performance over their standard counterparts for heats of formation (MADs=4.73 and 4.44 kJ mol⁻¹, respectively, versus 4.94 and 4.64 kJ mol⁻¹). G3(MP2)-RAD shows similar performance to G3(MP2) for radical heats of formation (MAD=5.10 versus 5.15 kJ mol⁻¹) while G3X(MP2)-RAD performs significantly better than G3X(MP2) (MAD=4.67 versus 5.19 kJ mol⁻¹).The authors gratefully acknowledge generous allocations of computing time on the Compaq Alphaserver of the National Facility of the Australian Partnership for Advanced Computing, Australian National University Supercomputer Facility, and the support of the Australian Research Council

    Construction of rugged, ultrastable optical assemblies with optical component alignment at the few microradian level

    Get PDF
    A method for constructing quasimonolithic, precision-aligned optical assemblies is presented. Hydroxide-catalysis bonding is used, adapted to allow optimization of component fine alignment prior to the bond setting. We demonstrate the technique by bonding a fused silica mirror substrate to a fused silica baseplate. In-plane component placement at the submicrometer level is achieved, resulting in angular control of a reflected laser beam at the sub-10-μrad level. Within the context of the LISA Pathfinder mission, the technique has been demonstrated as suitable for use in space-flight applications. It is expected that there will also be applications in a wide range of areas where accuracy, stability, and strength of optical assemblies are important

    Fidelity enhancement by logical qubit encoding

    Full text link
    We demonstrate coherent control of two logical qubits encoded in a decoherence free subspace (DFS) of four dipolar-coupled protons in an NMR quantum information processor. A pseudo-pure fiducial state is created in the DFS, and a unitary logical qubit entangling operator evolves the system to a logical Bell state. The four-spin molecule is partially aligned by a liquid crystal solvent, which introduces strong dipolar couplings among the spins. Although the system Hamiltonian is never fully specified, we demonstrate high fidelity control over the logical degrees of freedom. In fact, the DFS encoding leads to higher fidelity control than is available in the full four-spin Hilbert space.Comment: 10 pages, 2 figure
    corecore