10 research outputs found

    Complexity of the Genetics and Clinical Presentation of Spinocerebellar Ataxia 17

    Get PDF
    Spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the TATA-box binding protein gene (TBP). The disease has a varied age at onset and clinical presentation. It is distinct from other SCAs for its association with dementia, psychiatric symptoms, and some patients presenting with chorea. For this reason, it is also called Huntington’s disease-like 4 (HDL-4). Here we examine the distribution of SCA17 allele repeat sizes in a United Kingdom-based cohort with ataxia and find that fully penetrant pathogenic alleles are very rare (5 in 1,316 chromosomes; 0.38%). Phenotype-genotype correlation was performed on 30 individuals and the repeat structure of their TBP genes was examined. We found a negative linear correlation between total CAG repeat length and age at disease onset and, unlike SCA1, there was no correlation between the longest contiguous CAG tract and age at disease onset. We were unable to identify any particular phenotypic trait that segregated with particular CAG/CAA repeat tract structures or repeat lengths. One individual within the cohort was homozygous for variable penetrance range SCA17 alleles. This patient had a similar age at onset to heterozygotes with the same repeat sizes, but also presented with a rapidly progressive dementia. A pair of monozygotic twins within the cohort presented 3 years apart with the sibling with the earlier onset having a more severe phenotype with dementia and chorea in addition to the ataxia observed in their twin. This appears to be a case of variable expressivity, possibly influenced by other environmental or epigenetic factors. Finally, there was an asymptomatic father with a severely affected child with an age at onset in their twenties. Despite this, they share the same expanded allele repeat sizes and sequences, which would suggest that there is marked difference in the penetrance of this 51-repeat allele. We therefore propose that the variable penetrance range extend from 48 repeats to incorporate this allele. This study shows that there is variability in the presentation and penetrance of the SCA17 phenotype and highlights the complexity of this disorder

    Complexity of the Genetics and Clinical Presentation of Spinocerebellar Ataxia 17

    Get PDF
    Spinocerebellar ataxia type 17 (SCA17) is a rare autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the TATA-box binding protein gene (TBP). The disease has a varied age at onset and clinical presentation. It is distinct from other SCAs for its association with dementia, psychiatric symptoms, and some patients presenting with chorea. For this reason, it is also called Huntington’s disease-like 4 (HDL-4). Here we examine the distribution of SCA17 allele repeat sizes in a United Kingdom-based cohort with ataxia and find that fully penetrant pathogenic alleles are very rare (5 in 1,316 chromosomes; 0.38%). Phenotype-genotype correlation was performed on 30 individuals and the repeat structure of their TBP genes was examined. We found a negative linear correlation between total CAG repeat length and age at disease onset and, unlike SCA1, there was no correlation between the longest contiguous CAG tract and age at disease onset. We were unable to identify any particular phenotypic trait that segregated with particular CAG/CAA repeat tract structures or repeat lengths. One individual within the cohort was homozygous for variable penetrance range SCA17 alleles. This patient had a similar age at onset to heterozygotes with the same repeat sizes, but also presented with a rapidly progressive dementia. A pair of monozygotic twins within the cohort presented 3 years apart with the sibling with the earlier onset having a more severe phenotype with dementia and chorea in addition to the ataxia observed in their twin. This appears to be a case of variable expressivity, possibly influenced by other environmental or epigenetic factors. Finally, there was an asymptomatic father with a severely affected child with an age at onset in their twenties. Despite this, they share the same expanded allele repeat sizes and sequences, which would suggest that there is marked difference in the penetrance of this 51-repeat allele. We therefore propose that the variable penetrance range extend from 48 repeats to incorporate this allele. This study shows that there is variability in the presentation and penetrance of the SCA17 phenotype and highlights the complexity of this disorder

    Defining the causes of sporadic Parkinson's disease in the global Parkinson's genetics program (GP2)

    Get PDF
    The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Swept Under the Rug? A Historiography of Gender and Black Colleges

    Full text link

    Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome

    No full text
    Meckel-Gruber syndrome (MKS) is a recessive disorder resulting in multiple birth defects that are associated with mutations affecting ciliogenesis. We recovered a mouse mutant with a mutation in the Mks1 gene (Mks1del64-323) that caused a 260-amino-acid deletion spanning nine amino acids in the B9 domain, a protein motif with unknown function conserved in two other basal body proteins. We showed that, in wild-type cells, Mks1 was localized to the mother centriole from which the cilium was generated. However, in mutant Mks1del64-323 cells, Mks1 was not localized to the centriole, even though it maintained a punctate distribution. Resembling MKS patients, Mks1 mutants had craniofacial defects, polydactyly, congenital heart defects, polycystic kidneys and randomized left-right patterning. These defects reflected disturbance of functions subserved by motile and non-motile cilia. In the kidney, glomerular and tubule cysts were observed along with short cilia, and cilia were reduced in number to a near-complete loss. Underlying the left-right patterning defects were fewer and shorter nodal cilia, and analysis with fluorescent beads showed no directional flow at the embryonic node. In the cochlea, the stereocilia were mal-patterned, with the kinocilia being abnormally positioned. Together, these defects suggested disruption of planar cell polarity, which is known to regulate node, kidney and cochlea development. In addition, we also showed that Shh signaling was disrupted. Thus, in the neural tube, the floor plate was not specified posteriorly even as expression of the Shh mediator Gli2 increased. By contrast, the Shh signaling domain was expanded in the anterior neural tube and anterior limb bud, consistent with reduced Gli3-repressor (Gli3R) function. The latter probably accounted for the preaxial digit duplication exhibited by the Mks1del64-323 mutants. Overall, these findings indicate that centriole localization of Mks1 is required for ciliogenesis of motile and non-motile cilia, but not for centriole assembly. On the basis of these results, we hypothesize a role for the B9 domain in mother centriole targeting, a possibility that warrants further future investigations
    corecore