19 research outputs found

    Bioluminescence-Activated Photodynamic Therapy for Luciferase Transfected, Grade 4 Astrocytoma cells in vitro

    Get PDF
    BACKGROUND: Grade 4 astrocytoma is incurable due to the diffusely infiltrative nature of the disease. Photodynamic therapy (PDT) is a promising therapeutic option, but external light delivery is not feasible when cancer cells infiltrate unknown areas of normal brain. Hence the search for endogenous sources such as bioluminescence that can generate light at cancer cells. This requires a substrate (a luciferin) and an enabling enzyme (a luciferase), neither seen in mammalian cells. METHODS: Preliminary studies confirmed that U87 cells (derived from a human grade 4 astrocytoma) could be killed by conventional PDT using the photosensitisers hypericin or mTHPC. U87 cells were then transfected with firefly and other luciferases and light generating cell lines (U87-luc, U87-hRluc, U87-CBG68luc) identified using the appropriate substrate. Reagent doses and conditions were optimized and U87-luc cells incubated with hypericin or mTHPC with d-luciferin added to initiate bioluminescence activated PDT (bPDT). Cell survival was assessed by MTT assay, haemocytometry and growth assay. Control groups included U87-luc cells with no added active reagents, substrate only, photosensitiser only and non-transfected U87 cells. Results were expressed as a percentage of surviving cells compared with untreated U87-luc controls. RESULTS: There was no bPDT effect on non-transfected cells. The mean survival of treated transfected cells was 36%, (P<0.001) using hypericin and 35% (P<0.001) using mTHPC, compared with untreated U87-luc cells. bPDT effects were suppressed by the anti-oxidant, lycopene. CONCLUSIONS: bPDT can kill Grade 4 astrocytoma cells transfected with luciferase in vitro. This justifies progression to in vivo studies

    Clinical characteristics of women captured by extending the definition of severe postpartum haemorrhage with 'refractoriness to treatment': a cohort study

    Get PDF
    Background: The absence of a uniform and clinically relevant definition of severe postpartum haemorrhage hampers comparative studies and optimization of clinical management. The concept of persistent postpartum haemorrhage, based on refractoriness to initial first-line treatment, was proposed as an alternative to common definitions that are either based on estimations of blood loss or transfused units of packed red blood cells (RBC). We compared characteristics and outcomes of women with severe postpartum haemorrhage captured by these three types of definitions. Methods: In this large retrospective cohort study in 61 hospitals in the Netherlands we included 1391 consecutive women with postpartum haemorrhage who received either ≥4 units of RBC or a multicomponent transfusion. Clinical characteristics and outcomes of women with severe postpartum haemorrhage defined as persistent postpartum haemorrhage were compared to definitions based on estimated blood loss or transfused units of RBC within 24 h following birth. Adverse maternal outcome was a composite of maternal mortality, hysterectomy, arterial embolisation and intensive care unit admission. Results: One thousand two hundred sixty out of 1391 women (90.6%) with postpartum haemorrhage fulfilled the definition of persistent postpartum haemorrhage. The majority, 820/1260 (65.1%), fulfilled this definition within 1 h following birth, compared to 819/1391 (58.7%) applying the definition of ≥1 L blood loss and 37/845 (4.4%) applying the definition of ≥4 units of RBC. The definition persistent postpartum haemorrhage captured 430/471 adverse maternal outcomes (91.3%), compared to 471/471 (100%) for ≥1 L blood loss and 383/471 (81.3%) for ≥4 units of RBC. Persistent postpartum haemorrhage did not capture all adverse outcomes because of missing data on timing of initial, first-line treatment. Conclusion: The definition persistent postpartum haemo

    Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen

    Get PDF
    Targeted cell- or region-specific gene recombination is widely used in the functional analysis of genes implicated in development and disease. In the brain, targeted gene recombination has become a mainstream approach to study neurodegeneration or tumorigenesis. The use of the Cre-loxP system to study tumorigenesis in the adult central nervous system (CNS) can be limited, when the promoter (such as GFAP) is also transiently expressed during development, which can result in the recombination of progenies of different lineages. Engineering of transgenic mice expressing Cre recombinase fused to a mutant of the human oestrogen receptor (ER) allows the circumvention of transient developmental Cre expression by inducing recombination in the adult organism. The recombination of loxP sequences occurs only in the presence of tamoxifen. Systemic administration of tamoxifen can, however, exhibit toxicity and might also recombine unwanted cell populations if the promoter driving Cre expression is active at the time of tamoxifen administration. Here, we report that a single site-specific injection of an active derivative of tamoxifen successfully activates Cre recombinase and selectively recombines tumour suppressor genes in neural progenitor cells of the subventricular zone in mice, and we demonstrate its application in a model for the generation of intrinsic brain tumours
    corecore