2,511 research outputs found

    Radio jet refraction in galactic atmospheres with static pressure gradients

    Get PDF
    A theory of double radio sources which have a 'Z' or 'S' morphology is proposed, based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy. The model describes a collimated jet of supersonic material bending self-consistently under the influence of external static pressure gradients. Gravity and magnetic fields are neglected in the simplest case except insofar as they determine the static pressure distribution. The calculation is a straightforward extension of a method used to calculate a ram-pressure model for twin radio trails ('C' morphology). It may also be described as a continuous-jet version of a buoyancy model proposed in 1973. The model has the added virtue of invoking a galactic atmosphere similar to those already indicated by X-ray measurements of some other radio galaxies and by models for the collimation of other radio jets

    Synchrotron brightness distribution of turbulent radio jets

    Get PDF
    Radio jets are considered as turbulent mixing regions and it is proposed that the essential small scale viscous dissipation in these jets is by emission of MHD waves and by their subsequent strong damping due, at least partly, to gyro-resonant acceleration of supra-thermal particles. A formula relating the synchrotron surface brightness of a radio jet to the turbulent power input is deduced from physical postulates, and is tested against the data for NGC315 and 3C31 (NGC383). The predicted brightness depends essentially on the collimation behavior of the jet, and, to a lesser extent, on the CH picture of a 'high' nozzle with accelerating flow. The conditions for forming a large scale jet at a high nozzle from a much smaller scale jet are discussed. The effect of entrainment on the prediction is discussed with the use of similarity solutions. Although entrainment is inevitably associated with the turbulent jet, it may or may not be a dominant factor depending on the ambient density profile

    170 GENDER DIFFERENCES IN KNEE JOINT LOADS WITH INCREASING BODY MASS

    Get PDF

    Acoustic phonon scattering in a low density, high mobility AlGaN/GaN field effect transistor

    Full text link
    We report on the temperature dependence of the mobility, μ\mu, of the two-dimensional electron gas in a variable density AlGaN/GaN field effect transistor, with carrier densities ranging from 0.4×1012\times10^{12} cm2^{-2} to 3.0×1012\times10^{12} cm2^{-2} and a peak mobility of 80,000 cm2^{2}/Vs. Between 20 K and 50 K we observe a linear dependence μac1=α\mu_{ac}^{-1} = \alphaT indicating that acoustic phonon scattering dominates the temperature dependence of the mobility, with α\alpha being a monotonically increasing function of decreasing 2D electron density. This behavior is contrary to predictions of scattering in a degenerate electron gas, but consistent with calculations which account for thermal broadening and the temperature dependence of the electron screening. Our data imply a deformation potential D = 12-15 eV.Comment: 3 pages, 2 figures, RevTeX. Submitted to Appl Phys Let

    Constraints on the Formation and Evolution of Circumstellar Disks in Rotating Magnetized Cloud Cores

    Get PDF
    We use magnetic collapse models to place some constraints on the formation and angular momentum evolution of circumstellar disks which are embedded in magnetized cloud cores. Previous models have shown that the early evolution of a magnetized cloud core is governed by ambipolar diffusion and magnetic braking, and that the core takes the form of a nonequilibrium flattened envelope which ultimately collapses dynamically to form a protostar. In this paper, we focus on the inner centrifugally-supported disk, which is formed only after a central protostar exists, and grows by dynamical accretion from the flattened envelope. We estimate a centrifugal radius for the collapse of mass shells within a rotating, magnetized cloud core. The centrifugal radius of the inner disk is related to its mass through the two important parameters characterizing the background medium: the background rotation rate \Omb and the background magnetic field strength \Bref. We also revisit the issue of how rapidly mass is deposited onto the disk (the mass accretion rate) and use several recent models to comment upon the likely outcome in magnetized cores. Our model predicts that a significant centrifugal disk (much larger than a stellar radius) will be present in the very early (Class 0) stage of protostellar evolution. Additionally, we derive an upper limit for the disk radius as it evolves due to internal torques, under the assumption that the star-disk system conserves its mass and angular momentum even while most of the mass is transferred to a central star.Comment: 23 pages, 1 figure, aastex, to appear in the Astrophysical Journal (10 Dec 1998

    The final fate of spherical inhomogeneous dust collapse II: Initial data and causal structure of singularity

    Full text link
    Further to results in [9], pointing out the role of initial density and velocity distributions towards determining the final outcome of spherical dust collapse, the causal structure of singularity is examined here in terms of evolution of the apparent horizon. We also bring out several related features which throw some useful light towards understanding the nature of this singularity, including the behaviour of geodesic families coming out and some aspects related to the stability of singularity.Comment: Latex file, uses epsf.sty, 15 pages and 3 eps figures. Paragraph on role of smooth functions rewritten. Four references added. To appear in Classical & Quantum Gravit

    Rotation and X-ray emission from protostars

    Full text link
    The ASCA satellite has recently detected variable hard X-ray emission from two Class I protostars in the rho Oph cloud, YLW15 (IRS43) and WL6, with a characteristic time scale ~20h. In YLW15, the X-ray emission is in the form of quasi-periodic energetic flares, which we explain in terms of strong magnetic shearing and reconnection between the central star and the accretion disk. In WL6, X-ray flaring is rotationally modulated, and appears to be more like the solar-type magnetic activity ubiquitous on T Tauri stars. We find that YLW15 is a fast rotator (near break-up), while WL6 rotates with a significantly longer period. We derive a mass M_\star ~ 2 M_\odot and \simlt 0.4 M_\odot for the central stars of YLW15 and WL6 respectively. On the long term, the interactions between the star and the disk results in magnetic braking and angular momentum loss of the star. On time scales t_{br} ~ a few 10^5 yrs, i.e., of the same order as the estimated duration of the Class~I protostar stage. Close to the birthline there must be a mass-rotation relation, t_{br} \simpropto M_\star, such that stars with M_\star \simgt 1-2 M_\odot are fast rotators, while their lower-mass counterparts have had the time to spin down. The rapid rotation and strong star-disk magnetic interactions of YLW15 also naturally explain the observation of X-ray ``superflares''. In the case of YLW15, and perhaps also of other protostars, a hot coronal wind (T~10^6 K) may be responsible for the VLA thermal radio emission. This paper thus proposes the first clues to the rotation status and evolution of protostars.Comment: 13 pages with 6 figures. To be published in ApJ (April 10, 2000 Part 1 issue

    Towards a physical interpretation for the Stephani Universes

    Get PDF
    A physicaly reasonable interpretation is provided for the perfect fluid, sphericaly symmetric, conformally flat ``Stephani Universes''. The free parameters of this class of exact solutions are determined so that the ideal gas relation p=nkTp=n k T is identicaly fulfiled, while the full equation of state of a classical monatomic ideal gas and a matter-radiation mixture holds up to a good approximation in a near dust, matter dominated regime. Only the models having spacelike slices with positive curvature admit a regular evolution domain that avoids an unphysical singularity. In the matter dominated regime these models are dynamicaly and observationaly indistinguishable from ``standard'' FLRW cosmology with a dust source.Comment: 17 pages, 2 figures, LaTeX with revtex style, submitted to General Relativity and Gravitatio

    Envelope Structure of Starless Core L694-2 Derived from a Near-Infrared Extinction Map

    Full text link
    We present a near-infrared extinction study of the dark globule L694-2, a starless core that shows strong evidence for inward motions in molecular line profiles. The J,H, and K band data were taken using the European Southern Observatory New Technology Telescope. The best fit simple spherical power law model has index p=2.6 +/- 0.2, over the 0.036--0.1 pc range in radius sampled in extinction. This power law slope is steeper than the value of p=2 for a singular isothermal sphere, the initial condition of the inside-out model for protostellar collapse. Including an additional extinction component along the line of sight further steepens the inferred profile. Fitting a Bonnor-Ebert sphere results in a super-critical value of the dimensionless radius xi_max=25 +/- 3. The unstable configuration of material may be related to the observed inward motions. The Bonnor-Ebert model matches the shape of the observed profile, but significantly underestimates the amount of extinction (by a factor of ~4). This discrepancy in normalization has also been found for the nearby protostellar core B335 (Harvey et al. 2001). A cylindrical density model with scale height H=0.0164+/- 0.002 pc viewed at a small inclination to the cylinder axis provides an equally good radial profile as a power law model, and reproduces the asymmetry of the core remarkably well. In addition, this model provides a basis for understanding the discrepancy in the normalization of the Bonnor-Ebert model, namely that L694-2 has prolate structure, with the full extent (mass) of the core being missed by assuming symmetry between the profiles in the plane of the sky and along the line-of-sight. If the core is sufficiently magnetized then fragmentation may be avoided, and later evolution might produce a protostar similar to B335.Comment: 38 pages, 7 figures, accepted to Astrophysical Journa
    corecore