9 research outputs found

    Do inattention and hyperactivity symptoms equal scholastic impairment? evidence from three European cohorts

    Get PDF
    Background Attention Deficit/Hyperactivity Disorder (ADHD) affects many children, adolescents, and adults and is associated with a number of impairments. Poor academic performance is related to ADHD in clinical samples. However, it is unclear to what extent core ADHD symptoms and scholastic impairment are related in non-referred school-aged children. Methods Data come from three population-based cohorts from Sweden, Denmark, and Finland, which are part of the Nordic Network on ADHD. The combined sample size was 13,087 children who were studied at ages 7–8 or 10–12 years. Teachers rated children on inattention and hyperactivity symptoms and reported children's scholastic performance on basic skills. Results There was a significant association in all cohorts between core ADHD symptoms and scholastic impairment in reading, writing, and mathematics. Particularly, inattention was related to a two to tenfold increase in scholastic impairment. Prevalence of hyperactivity symptoms was similar across the three cohorts, but inattention was lowest among children from the Finnish cohort, after stratification on living conditions. Conclusion These results extend previous reports of scholastic impairment among children with clinically diagnosed ADHD to non-referred population samples from three European countries. Surveillance policies should be implemented in school systems to catch children in need of behavioral or scholastic support early

    Identification of target genes for wild type and truncated HMGA2 in mesenchymal stem-like cells

    Get PDF
    Background The HMGA2 gene, coding for an architectural transcription factor involved in mesenchymal embryogenesis, is frequently deranged by translocation and/or amplification in mesenchymal tumours, generally leading to over-expression of shortened transcripts and a truncated protein. Methods To identify pathways that are affected by sarcoma-associated variants of HMGA2, we have over-expressed wild type and truncated HMGA2 protein in an immortalized mesenchymal stem-like cell (MSC) line, and investigated the localisation of these proteins and their effects on differentiation and gene expression patterns. Results Over-expression of both transgenes blocked adipogenic differentiation of these cells, and microarray analysis revealed clear changes in gene expression patterns, more pronounced for the truncated protein. Most of the genes that showed altered expression in the HMGA2-overexpressing cells fell into the group of NF-κB-target genes, suggesting a central role for HMGA2 in this pathway. Of particular interest was the pronounced up-regulation of SSX1, already implicated in mesenchymal oncogenesis and stem cell functions, only in cells expressing the truncated protein. Furthermore, over-expression of both HMGA2 forms was associated with a strong repression of the epithelial marker CD24, consistent with the reported low level of CD24 in cancer stem cells. Conclusions We conclude that the c-terminal part of HMGA2 has important functions at least in mesenchymal cells, and the changes in gene expression resulting from overexpressing a protein lacking this domain may add to the malignant potential of sarcomas

    Going to extremes - a metagenomic journey into the dark matter of life

    No full text
    The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life
    corecore