8 research outputs found

    Dysregulation of a novel miR-23b/27b-p53 axis impairs muscle stem cell differentiation of humans with type 2 diabetes

    Get PDF
    Objective: MicroRNAs (miRNAs) are increasingly recognized as fine-tuning regulators of metabolism, and are dysregulated in several disease conditions. With their capacity to rapidly change gene expression, miRNAs are also important regulators of development and cell differentiation. In the current study, we describe an impaired myogenic capacity of muscle stem cells isolated from humans with type 2 diabetes (T2DM) and assess whether this phenotype is regulated by miRNAs. Methods: We measured global miRNA expression during in vitro differentiation of muscle stem cells derived from T2DM patients and healthy controls. Results: The mir-23b/27b cluster was downregulated in the cells of the patients, and a pro-myogenic effect of these miRNAs was mediated through the p53 pathway, which was concordantly dysregulated in the muscle cells derived from humans with T2DM. Conclusions: Our results indicate that we have identified a novel pathway for coordination of myogenesis, the miR-23b/27b-p53 axis that, when dysregulated, potentially contributes to a sustained muscular dysfunction in T2DM

    Glucagon like peptide-1-induced glucose metabolism in differentiated human muscle satellite cells is attenuated by hyperglycemia

    Get PDF
    BACKGROUND: Glucagon like peptide-1 (GLP-1) stimulates insulin secretion from the pancreas but also has extra-pancreatic effects. GLP-1 may stimulate glucose uptake in cultured muscle cells but the mechanism is not clearly defined. Furthermore, while the pancreatic effects of GLP-1 are glucose-dependent, the glucose-dependency of its extra-pancreatic effects has not been examined. METHODS: Skeletal muscle satellite cells isolated from young (22.5 ± 0.97 yr), lean (BMI 22.5 ± 0.6 kg/m(2)), healthy males were differentiated in media containing either 22.5 mM (high) or 5 mM (normal) glucose for 7 days in the absence or presence of insulin and/or various GLP-1 concentrations. Myocellular effects of GLP-1, insulin and glucose were assessed by western-blot, glucose uptake and glycogen synthesis. RESULTS: We firstly show that the GLP-1 receptor protein is expressed in differentiated human muscle satellite cells (myocytes). Secondly, we show that in 5 mM glucose media, exposure of myocytes to GLP-1 results in a dose dependent increase in glucose uptake, GLUT4 amount and subsequently glycogen synthesis in a PI3K dependent manner, independent of the insulin signaling cascade. Importantly, we provide evidence that differentiation of human satellite cells in hyperglycemic (22.5 mM glucose) conditions increases GLUT1 expression, and renders the cells insulin resistant and interestingly GLP-1 resistant in terms of glucose uptake and glycogen synthesis. Hyperglycemic conditions did not affect the ability of insulin to phosphorylate downstream targets, PKB or GSK3. Interestingly we show that at 5 mM glucose, GLP-1 increases GLUT4 protein levels and that this effect is abolished by hyperglycemia. CONCLUSIONS: GLP-1 increases glucose uptake and glycogen synthesis into fully-differentiated human satellite cells in a PI3-K dependent mechanism potentially through increased GLUT4 protein levels. The latter occurs independently of the insulin signaling pathway. Attenuation of both GLP-1 and insulin-induced glucose metabolism by hyperglycemia is likely to occur downstream of PI3K

    Effect of GLP-1 treatment on glycogen synthesis in myocytes cultured in high or normal glucose media.

    No full text
    <p>Satellite cells were isolated from lean, healthy males (n = 6), and differentiated in either high glucose (22 mM, open bars) or normal glucose (5 mM, black bars) media for seven days. Myocytes were treated with either 100 nM insulin and/or 100 nM GLP-1 for 30 minutes before assessing glycogen synthesis (by measuring incorporation of [<sup>14</sup>C]-glucose in to glycogen). (A) Shows absolute rates of glycogen synthesis in the basal level (n = 6, in triplicate); (B) indicates fold changes from basal levels for each glucose condition. Significant changes from basal levels are indicated by * (P<0.05), and ** (P<0.001).</p
    corecore