30 research outputs found

    Sub-Clinical Cognitive Decline and Resting Cerebral Blood Flow in Middle Aged Men

    Get PDF
    Although dementia is associated with both global and regional cerebral blood flow (CBF) changes, little is known about cerebral perfusion in the early pre-clinical stages of cognitive decline preceding overt cognitive dysfunction. The aim of this study was to investigate the association of early sub-clinical cognitive decline with CBF. The study participants were recruited from a cohort of Danish men born in 1953. Based on a regression model we selected men who performed better (Group A, n=94) and poorer (Group B, n=95) on cognitive testing at age 57 than expected from testing at age 20. Participants underwent supplementary cognitive testing, blood sampling and MRI including measurements of regional and global CBF. Regional CBF was lower in group B than in group A in the posterior cingulate gyrus and the precuneus. The associations were attenuated when corrected for global atrophy, but remained significant in regions of interest based analysis adjusting for regional gray matter volume and vascular risk factors. No influence of group on global CBF was observed. We conclude that early sub-clinical cognitive decline is associated with reduced perfusion in the precuneus and posterior cingulate gyrus independently of regional atrophy and vascular risk factors, but cannot be statistically separated from an association with global atrophy

    DeepDixon synthetic CT for [18F]FET PET/MRI attenuation correction of post-surgery glioma patients with metal implants

    Get PDF
    PurposeConventional magnetic resonance imaging (MRI) can for glioma assessment be supplemented by positron emission tomography (PET) imaging with radiolabeled amino acids such as O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET), which provides additional information on metabolic properties. In neuro-oncology, patients often undergo brain and skull altering treatment, which is known to challenge MRI-based attenuation correction (MR-AC) methods and thereby impact the simplified semi-quantitative measures such as tumor-to-brain ratio (TBR) used in clinical routine. The aim of the present study was to examine the applicability of our deep learning method, DeepDixon, for MR-AC in [18F]FET PET/MRI scans of a post-surgery glioma cohort with metal implants.MethodsThe MR-AC maps were assessed for all 194 included post-surgery glioma patients (318 studies). The subgroup of 147 patients (222 studies, 200 MBq [18F]FET PET/MRI) with tracer uptake above 1 ml were subsequently reconstructed with DeepDixon, vendor-default atlas-based method, and a low-dose computed tomography (CT) used as reference. The biological tumor volume (BTV) was delineated on each patient by isocontouring tracer uptake above a TBR threshold of 1.6. We evaluated the MR-AC methods using the recommended clinical metrics BTV and mean and maximum TBR on a patient-by-patient basis against the reference with CT-AC.ResultsNinety-seven percent of the studies (310/318) did not have any major artifacts using DeepDixon, which resulted in a Dice coefficient of 0.89/0.83 for tissue/bone, respectively, compared to 0.84/0.57 when using atlas. The average difference between DeepDixon and CT-AC was within 0.2% across all clinical metrics, and no statistically significant difference was found. When using DeepDixon, only 3 out of 222 studies (1%) exceeded our acceptance criteria compared to 72 of the 222 studies (32%) with the atlas method.ConclusionWe evaluated the performance of a state-of-the-art MR-AC method on the largest post-surgical glioma patient cohort to date. We found that DeepDixon could overcome most of the issues arising from irregular anatomy and metal artifacts present in the cohort resulting in clinical metrics within acceptable limits of the reference CT-AC in almost all cases. This is a significant improvement over the vendor-provided atlas method and of particular importance in response assessment

    C9ORF72 hexanucleotide repeat expansion with Alzheimer's disease-like clinical phenotype:A case report with results from neuropsychology, CSF, FDG-PET, and PiB-PET

    No full text
    Abstract A thorough family history and relevant investigation program are essential to settle accurate diagnosis when clinical presentation is atypical or with a mixed picture

    Hybrid FDG PET/MRI vs. FDG PET and CT in patients with suspected dementia - A comparison of diagnostic yield and propagated influence on clinical diagnosis and patient management.

    Get PDF
    BackgroundBoth 18F-fluoro-deoxy-glucose (FDG) positron emission tomography (PET), computed tomography (CT) and magnetic resonance imaging (MRI) are routinely used in the evaluation of memory clinic patients. Hybrid PET/MR systems now allow simultaneous PET and MRI imaging within the duration of the PET emission scan.PurposeTo compare the diagnostic yield of PET/MRI using an abbreviated MR protocol with that of separate PET and CT in a mixed memory clinic population, and the propagated influences on clinical diagnosis and patient management.Material and methodsConsecutive memory clinic patients (n = 78) undergoing both CT and hybrid FDG PET/MRI scans were identified retrospectively. MRI and CT were separately evaluated for vascular and structural pathology. PET scans were classified according to the presence of neurodegenerative or vascular disease using CT or MRI, respectively, for anatomical guiding. A memory clinic expert assessed the clinical impact of the additional findings and/or change of PET classification achieved by MRI anatomical guiding as compared to CT guiding.ResultsMRI lead to significantly higher Fazekas scores, higher medial temporal and global cortical atrophy scores, and identified more patients with infarcts (28 vs 8, pConclusionThe study demonstrates the capabilities of PET/MRI systems for routine clinical imaging of memory clinic patients, and that even an abbreviated hybrid PET/MRI protocol provides significant additional information influencing clinical diagnosis and patient management in a substantial fraction of patients when compared to separate PET and CT
    corecore