15 research outputs found

    The Terminal Extensions of Dbp7 Influence Growth and 60S Ribosomal Subunit Biogenesis in Saccharomyces cerevisiae

    Get PDF
    Ribosome synthesis is a complex process that involves a large set of protein trans-acting factors, among them DEx(D/H)-box helicases. These are enzymes that carry out remodelling activities onto RNAs by hydrolysing ATP. The nucleolar DEGD-box protein Dbp7 is required for the biogenesis of large 60S ribosomal subunits. Recently, we have shown that Dbp7 is an RNA helicase that regulates the dynamic base-pairing between the snR190 small nucleolar RNA and the precursors of the ribosomal RNA within early pre-60S ribosomal particles. As the rest of DEx(D/H)-box proteins, Dbp7 has a modular organization formed by a helicase core region, which contains conserved motifs, and variable, non-conserved N- and C-terminal extensions. The role of these extensions remains unknown. Herein, we show that the N-terminal domain of Dbp7 is necessary for efficient nuclear import of the protein. Indeed, a basic bipartite nuclear localization signal (NLS) could be identified in its N-terminal domain. Removal of this putative NLS impairs, but does not abolish, Dbp7 nuclear import. Both N- and C-terminal domains are required for normal growth and 60S ribosomal subunit synthesis. Furthermore, we have studied the role of these domains in the association of Dbp7 with pre-ribosomal particles. Altogether, our results show that the N- and C-terminal domains of Dbp7 are important for the optimal function of this protein during ribosome biogenesis.Ministerio de Ciencia e Innovación PID2019-103850-GB-I00Junta de Andalucía P20_00581, BIO-271, BIO-210Universidad de Sevilla US-138039

    Association of snR190 snoRNA chaperone with early pre-60S particles is regulated by the RNA helicase Dbp7 in yeast

    Get PDF
    Synthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit.The Henry/Henras group is supported by grants from ANR (ANR-20-CE12-0026) and funding from CNRS and University of Toulouse. R.A.M. is supported by grants from the Rectorat of Lebanese University. M.J. is supported by a Ph.D. fellowship from the Lebanese University and CIOES Organization. The group of J.d.l.C. is supported by the Spanish Ministry of Science and Innovation [PID2019-103859-GB-I00 AEI/ 10.13039/501100011033], and the Andalusian Regional Government (JA; BIO-271). J.C. was supported by a Ph.D. fellowship (PIF) from the University of Seville, and S.M.-V. is an academic research staff of the JA (PAIDI2020). M.T.B. and K.E.B. are supported by funding from the Deutsche Forschungsgemeinschaft (SFB860) and the University Medical Centre Göttingen

    A cotranscriptional model for 3′-end processing of the Saccharomyces cerevisiae pre-ribosomal RNA precursor

    No full text
    Cleavage of the Saccharomyces cerevisiae primary ribosomal RNA (rRNA) transcript in the 3′ external transcribed spacer (ETS) by Rnt1p generates the 35S pre-rRNA, the earliest detectable species in the pre-rRNA processing pathway. In this study we show that Rnt1p is concentrated in a subnucleolar dot-shaped territory distinct from the nucleolar body. The 35S pre-rRNA is localized at the periphery of the Rnt1p dot, in a pattern that suggests a diffusion of the 35S pre-rRNA from the site of Rnt1p processing. When plasmid-borne versions of the rDNA are used to express rRNAs, the Rnt1p territory reorganizes around these plasmids, suggesting a close association between Rnt1p and the plasmid-borne rDNA units. Rnt1p was found associated with the endogenous rDNA by chromatin immunoprecipitation. Deletion of functionally important Rnt1p domains result in a loss of the dot-shaped territory, showing that this subnucleolar territory corresponds to a functional site of processing. These results show that a large fraction of Rnt1p is localized at the site of transcription of the rDNA, suggesting that the cleavage of the primary pre-rRNA transcript to generate the 35S pre-rRNA is a cotranscriptional event

    Contributions of Trf4p- and Trf5p-dependent polyadenylation to the processing and degradative functions of the yeast nuclear exosome

    No full text
    The nuclear exosome is involved in a large number of RNA processing and surveillance pathways. RNase III cleavage intermediates destined to be 3′-processed or degraded can be detected when the Rrp6p subunit of the nuclear exosome is absent. Here we show that these processing and degradation intermediates are polyadenylated, and that their polyadenylation is dependent on the activity of Trf4p and Trf5p, two variant poly(A) polymerases. Polyadenylation of cleavage intermediates was inhibited when Trf4p was absent, and reduced to various extents in the absence of Trf5p, suggesting that these two poly(A) polymerases play functionally distinct roles in the polyadenylation of these RNA species. Finally, in the absence of Trf4p, we observed 3′-extended forms of the U4 snRNA that are similar to those observed in the absence of Rrp6p. These results suggest that polyadenylation of RNA processing intermediates plays a functional role in RNA processing pathways and is not limited to RNA surveillance functions

    Cbf5p, the putative pseudouridine synthase of H/ACA-type snoRNPs, can form a complex with Gar1p and Nop10p in absence of Nhp2p and box H/ACA snoRNAs

    No full text
    Box C/D and box H/ACA small ribonucleoprotein particles (sRNPs) are found from archaea to humans, and some of these play key roles during the biogenesis of ribosomes or components of the splicing apparatus. The protein composition of the core of both types of particles is well established and the assembly pathway of box C/D sRNPs has been extensively investigated both in archaeal and eukaryotic systems. In contrast, knowledge concerning the mode of assembly and final structure of box H/ACA sRNPs is much more limited. In the present study, we have investigated the protein/protein interactions taking place between the four protein components of yeast box H/ACA small nucleolar RNPs (snoRNPs), Cbf5p, Gar1p, Nhp2p, and Nop10p. We provide evidence that Cbf5p, Gar1p, and Nop10p can form a complex devoid of Nhp2p and small nucleolar RNA (snoRNA) components of the particles and that Cbf5p and Nop10p can directly bind to each other. We also show that the absence of any component necessary for assembly of box H/ACA snoRNPs inhibits accumulation of Cbf5p, Gar1p, or Nop10p, whereas Nhp2p levels are little affected

    Evolutionarily Conserved Function of RRP36 in Early Cleavages of the Pre-rRNA and Production of the 40S Ribosomal Subunit ▿ †

    No full text
    Ribosome biogenesis in eukaryotes is a major cellular activity mobilizing the products of over 200 transcriptionally coregulated genes referred to as the rRNA and ribosome biosynthesis regulon. We investigated the function of an essential, uncharacterized gene of this regulon, renamed RRP36. We show that the Rrp36p protein is nucleolar and interacts with 90S and pre-40S preribosomal particles. Its depletion affects early cleavages of the 35S pre-rRNA and results in a rapid decrease in mature 18S rRNA levels. Rrp36p is a novel component of the 90S preribosome, the assembly of which has been suggested to result from the stepwise incorporation of several modules, including the tUTP/UTP-A, PWP2/UTP-B, and UTP-C subcomplexes. We show that Rrp36p depletion does not impair the incorporation of these subcomplexes and the U3 small nucleolar RNP into preribosomes. In contrast, depletion of components of the UTP-A or UTP-B modules, but not Rrp5p, prevents Rrp36p recruitment and reduces its accumulation levels. In parallel, we studied the human orthologue of Rrp36p in HeLa cells, and we show that the function of this protein in early cleavages of the pre-rRNA has been conserved through evolution in eukaryotes

    Biochemical and genomic analysis of substrate recognition by the double-stranded RNA binding domain of yeast RNase III

    No full text
    Members of the RNase III family of double-stranded RNA (dsRNA) endonucleases are important enzymes of RNA metabolism in eukaryotic cells. Rnt1p is the only known member of the RNase III family of endonucleases in Saccharomyces cerevisiae. Previous studies have shown that Rnt1p cleaves dsRNA capped by a conserved AGNN tetraloop motif, which is a major determinant for Rnt1p binding and cleavage. The solution structure of the dsRNA-binding domain (dsRBD) of Rnt1p bound to a cognate RNA substrate revealed the structural basis for binding of the conserved tetraloop motif by α-helix 1 of the dsRBD. In this study, we have analyzed extensively the effects of mutations of helix 1 residues that contact the RNA. We show, using microarray analysis, that mutations of these amino acids induce substrate-specific processing defects in vivo. Cleavage kinetics and binding studies show that these mutations affect RNA cleavage and binding in vitro to different extents and suggest a function for some specific amino acids of the dsRBD in the catalytic positioning of the enzyme. Moreover, we show that 2′-hydroxyl groups of nucleotides of the tetraloop or adjacent base pairs predicted to interact with residues of α-helix 1 are important for Rnt1p cleavage in vitro. This study underscores the importance of a few amino acid contacts for positioning of a dsRBD onto its RNA target, and implicates the specific orientation of helix 1 on the RNA for proper positioning of the catalytic domain

    The Terminal Extensions of Dbp7 Influence Growth and 60S Ribosomal Subunit Biogenesis in Saccharomyces cerevisiae

    No full text
    Ribosome synthesis is a complex process that involves a large set of protein trans-acting factors, among them DEx(D/H)-box helicases. These are enzymes that carry out remodelling activities onto RNAs by hydrolysing ATP. The nucleolar DEGD-box protein Dbp7 is required for the biogenesis of large 60S ribosomal subunits. Recently, we have shown that Dbp7 is an RNA helicase that regulates the dynamic base-pairing between the snR190 small nucleolar RNA and the precursors of the ribosomal RNA within early pre-60S ribosomal particles. As the rest of DEx(D/H)-box proteins, Dbp7 has a modular organization formed by a helicase core region, which contains conserved motifs, and variable, non-conserved N- and C-terminal extensions. The role of these extensions remains unknown. Herein, we show that the N-terminal domain of Dbp7 is necessary for efficient nuclear import of the protein. Indeed, a basic bipartite nuclear localization signal (NLS) could be identified in its N-terminal domain. Removal of this putative NLS impairs, but does not abolish, Dbp7 nuclear import. Both N- and C-terminal domains are required for normal growth and 60S ribosomal subunit synthesis. Furthermore, we have studied the role of these domains in the association of Dbp7 with pre-ribosomal particles. Altogether, our results show that the N- and C-terminal domains of Dbp7 are important for the optimal function of this protein during ribosome biogenesis
    corecore