7,012 research outputs found

    Signatures of Planets in Spatially Unresolved Disks

    Full text link
    Main sequence stars are commonly surrounded by debris disks, composed of cold dust continuously replenished by a reservoir of undetected dust-producing planetesimals. In a planetary system with a belt of planetesimals (like the Solar System's Kuiper Belt) and one or more interior giant planets, the trapping of dust particles in the mean motion resonances with the planets can create structure in the dust disk, as the particles accumulate at certain semimajor axes. Sufficiently massive planets may also scatter and eject dust particles out of a planetary system, creating a dust depleted region inside the orbit of the planet. In anticipation of future observations of spatially unresolved debris disks with the Spitzer Space Telescope, we are interested in studying how the structure carved by planets affects the shape of the disk's spectral energy distribution (SED), and consequently if the SED can be used to infer the presence of planets. We numerically calculate the equilibrium spatial density distributions and SEDs of dust disks originated by a belt of planetesimals in the presence of interior giant planets in different planetary configurations, and for a representative sample of chemical compositions. The dynamical models are necessary to estimate the enhancement of particles near the mean motion resonances with the planets, and to determine how many particles drift inside the planet's orbit. Based on the SEDs and predicted Spitzer\it{Spitzer} colors we discuss what types of planetary systems can be distinguishable from one another and the main parameter degeneracies in the model SEDs.Comment: 40 pages (pre-print form), including 16 figures. Published in ApJ 200

    First Time-dependent Study of H2 and H3+ Ortho-Para Chemistry in the Diffuse Interstellar Medium: Observations Meet Theoretical Predictions

    Full text link
    The chemistry in the diffuse interstellar medium initiates the gradual increase of molecular complexity during the life cycle of matter. A key molecule that enables build-up of new molecular bonds and new molecules via proton-donation is H3+. Its evolution is tightly related to molecular hydrogen and thought to be well understood. However, recent observations of ortho and para lines of H2 and H3+ in the diffuse ISM showed a puzzling discrepancy in nuclear spin excitation temperatures and populations between these two key species. H3+, unlike H2, seems to be out of thermal equilibrium, contrary to the predictions of modern astrochemical models. We conduct the first time-dependent modeling of the para-fractions of H2 and H3+ in the diffuse ISM and compare our results to a set of line-of-sight observations, including new measurements presented in this study. We isolate a set of key reactions for H3+ and find that the destruction of the lowest rotational states of H3+ by dissociative recombination largely control its ortho/para ratio. A plausible agreement with observations cannot be achieved unless a ratio larger than 1:5 for the destruction of (1,1)- and (1,0)-states of H3+ is assumed. Additionally, an increased CR ionization rate to 10(-15) 1/s further improves the fit whereas variations of other individual physical parameters, such as density and chemical age, have only a minor effect on the predicted ortho/para ratios. Thus our study calls for new laboratory measurements of the dissociative recombination rate and branching ratio of the key ion H3+ under interstellar conditions.Comment: 27 pages, 6 figures, 3 table

    PYRAMIR: Calibration and operation of a pyramid near-infrared wavefront sensor

    Full text link
    The concept of pyramid wavefront sensors (PWFS) has been around about a decade by now. However, there is still a great lack of characterizing measurements that allow the best operation of such a system under real life conditions at an astronomical telescope. In this article we, therefore, investigate the behavior and robustness of the pyramid infrared wavefront sensor PYRAMIR mounted at the 3.5 m telescope at the Calar Alto Observatory under the influence of different error sources both intrinsic to the sensor, and arising in the preceding optical system. The intrinsic errors include diffraction effects on the pyramid edges and detector read out noise. The external imperfections consist of a Gaussian profile in the intensity distribution in the pupil plane during calibration, the effect of an optically resolved reference source, and noncommon-path aberrations. We investigated the effect of three differently sized reference sources on the calibration of the PWFS. For the noncommon-path aberrations the quality of the response of the system is quantified in terms of modal cross talk and aliasing. We investigate the special behavior of the system regarding tip-tilt control. From our measurements we derive the method to optimize the calibration procedure and the setup of a PWFS adaptive optics (AO) system. We also calculate the total wavefront error arising from aliasing, modal cross talk, measurement error, and fitting error in order to optimize the number of calibrated modes for on-sky operations. These measurements result in a prediction of on-sky performance for various conditions

    Resolving the chemical substructure of Orion-KL

    Full text link
    The Kleinmann-Low nebula in Orion (Orion-KL) is the nearest example of a high-mass star-forming environment. For the first time, we complemented 1.3 mm Submillimeter Array (SMA) interferometric line survey with IRAM 30 m single-dish observations of the Orion-KL region. Covering a 4 GHz bandwidth in total, this survey contains over 160 emission lines from 20 species (25 isotopologues), including 11 complex organic molecules (COMs). At a spatial resolution of 1200 AU, the continuum substructures are resolved. Extracting the spectra from individual substructures and providing the intensity-integrated distribution map for each species, we studied the small-scale chemical variations in this region. Our main results are: (1) We identify lines from the low-abundance COMs CH3COCH3 and CH3CH2OH, as well as tentatively detect CH3CHO and long carbon-chains C6H and HC7N. (2) We find that while most COMs are segregated by type, peaking either towards the hot core (e.g., N-bearing species) or the compact ridge (e.g., O-bearing species like HCOOCH3 and CH3OCH3), while the distributions of others do not follow this segregated structure (e.g., CH3CH2OH, CH3OH, CH3COCH3). (3) We find a second velocity component of HNCO, SO2, 34SO2, and SO lines, which may be associated with a strong shock event in the low-velocity outflow. (4) Temperatures and molecular abundances show large gradients between central condensations and the outflow regions, illustrating a transition between hot molecular core and shock-chemistry dominated regimes. Our observations of spatially resolved chemical variations in Orion-KL provide the nearest reference source for hot molecular core and outflow chemistry, which will be an important example for interpreting the chemistry of more distant HMSFRs.Comment: 51 pages, 17 figures, accepted on 12 March 2015 Dashed lines in Figure 10 of the published paper was missin

    Chemical evolution in the early phases of massive star formation II: Deuteration

    Full text link
    The chemical evolution in high-mass star-forming regions is still poorly constrained. Studying the evolution of deuterated molecules allows to differentiate between subsequent stages of high-mass star formation regions due to the strong temperature dependence of deuterium isotopic fractionation. We observed a sample of 59 sources including 19 infrared dark clouds, 20 high-mass protostellar objects, 11 hot molecular cores and 9 ultra-compact HII regions in the (3-2) transitions of the four deuterated molecules, DCN, DNC, DCO+ and N2D+ as well as their non-deuterated counterpart. The overall detection fraction of DCN, DNC and DCO+ is high and exceeds 50% for most of the stages. N2D+ was only detected in a few infrared dark clouds and high-mass protostellar objects. It can be related to problems in the bandpass at the frequency of the transition and to low abundances in the more evolved, warmer stages. We find median D/H ratios of ~0.02 for DCN, ~0.005 for DNC, ~0.0025 for DCO+ and ~0.02 for N2D+. While the D/H ratios of DNC, DCO+ and N2D+ decrease with time, DCN/HCN peaks at the hot molecular core stage. We only found weak correlations of the D/H ratios for N2D+ with the luminosity of the central source and the FWHM of the line, and no correlation with the H2 column density. In combination with a previously observed set of 14 other molecules (Paper I) we fitted the calculated column densities with an elaborate 1D physico-chemical model with time-dependent D-chemistry including ortho- and para-H2 states. Good overall fits to the observed data have been obtained the model. It is one of the first times that observations and modeling have been combined to derive chemically based best-fit models for the evolution of high-mass star formation including deuteration.Comment: 26 pages, 16 figures, accepted at A&

    Chemical evolution in the early phases of massive star formation. I

    Full text link
    Understanding the chemical evolution of young (high-mass) star-forming regions is a central topic in star formation research. Chemistry is employed as a unique tool 1) to investigate the underlying physical processes and 2) to characterize the evolution of the chemical composition. We observed a sample of 59 high-mass star-forming regions at different evolutionary stages varying from the early starless phase of infrared dark clouds to high-mass protostellar objects to hot molecular cores and, finally, ultra-compact HII regions at 1mm and 3mm with the IRAM 30m telescope. We determined their large-scale chemical abundances and found that the chemical composition evolves along with the evolutionary stages. On average, the molecular abundances increase with time. We modeled the chemical evolution, using a 1D physical model where density and temperature vary from stage to stage coupled with an advanced gas-grain chemical model and derived the best-fit chi^2 values of all relevant parameters. A satisfying overall agreement between observed and modeled column densities for most of the molecules was obtained. With the best-fit model we also derived a chemical age for each stage, which gives the timescales for the transformation between two consecutive stages. The best-fit chemical ages are ~10,000 years for the IRDC stage, ~60,000 years for the HMPO stage, ~40,000 years for the HMC stage, and ~10,000 years for the UCHII stage. The total chemical timescale for the entire evolutionary sequence of the high-mass star formation process is on the order of 10^5 years, which is consistent with theoretical estimates. Furthermore, based on the approach of a multiple-line survey of unresolved data, we were able to constrain an intuitive and reasonable physical and chemical model. The results of this study can be used as chemical templates for the different evolutionary stages in high-mass star formation.Comment: 31 pages, 11 figures, 21 tables, accepted by A&A; typos adde

    Universal Features of Terahertz Absorption in Disordered Materials

    Full text link
    Using an analytical theory, experimental terahertz time-domain spectroscopy data and numerical evidence, we demonstrate that the frequency dependence of the absorption coupling coefficient between far-infrared photons and atomic vibrations in disordered materials has the universal functional form, C(omega) = A + B*omega^2, where the material-specific constants A and B are related to the distributions of fluctuating charges obeying global and local charge neutrality, respectively.Comment: 5 pages, 3 fig
    corecore