77 research outputs found
Non-Fermi liquid behavior in a fluctuating valence system, the filled skutterudite compound CeRu_{4}As_{12}
Electrical resistivity , specific heat C, and magnetic susceptibility
measurements made on the filled skutterudite CeRu_4As_{12} reveal
non-Fermi liquid (NFL) T - dependences at low T, i.e., (T) T^{1.4}
and weak power law or logarithmic divergences in C(T)/T and (T).
Measurements also show that the T - dependence of the thermoelectric power S(T)
deviates from that seen in other Ce systems. The NFL behavior appears to be
associated with fluctuations of the Ce valence between 3^+ and 4^+ rather than
a typical Kondo lattice scenario that would be appropriate for an integral Ce
valence of 3^+.Comment: 18 pages, 5 figure
Inelastic neutron scattering studies of Crystal Field Levels in PrOsAs
We use neutron scattering to study the Pr crystalline electric field
(CEF) excitations in the filled skutterudite PrOsAs. By comparing
the observed levels and their strengths under neutron excitation with the
theoretical spectrum and neutron excitation intensities, we identify the
Pr CEF levels, and show that the ground state is a magnetic
triplet, and the excited states ,
and are at 0.4, 13 and 23 meV, respectively. A comparison of the
observed CEF levels in PrOsAs with the heavy fermion superconductor
PrOsSb reveals the microscopic origin of the differences in the
ground states of these two filled skutterudites.Comment: 7 pages, 7 figure
Existence of two-channel Kondo regime for tunneling impurities with resonant scattering
Dynamical tunneling systems have been proposed earlier to display a
two-channel Kondo effect, the orbital index of the particle playing the role of
a pseudospin in the equivalent Kondo problem, and the spin being a silent
channel index. However, as shown recently by Aleiner et al. [Phys. Rev. Lett.
86, 2629 (2001)], the predicted two-channel Kondo behavior can never be
observed in the weak coupling regime, where the tunneling induced splitting of
the levels of the tunneling system always dominates the physics. Here we show
that the above scenario changes completely if the conduction electrons are
scattered by resonant scattering off the tunneling impurity; Then - as a
non-perturbative analysis reveals - the two-channel Kondo regime can easily be
reached.Comment: 10 PRB page
Recommended from our members
Strongly Correlated F-Electron Systems: A PES Study
The term heavy fermions refers to materials (thus far only compounds with elements having an unfilled 4f or 5f shells) whose large specific heat {gamma}-values suggest that the conduction electrons at low temperatures have a very heavy effective mass. Magnetic susceptibility measurements, {chi}, generally yield a Curie-Weiss behavior at high temperatures with a well developed moment, which would be consistent with localized behavior of the f-electrons. Thus, the f-electrons appear to behave as non-interacting single impurities at elevated temperature. Below a characteristic Kondo temperature, T{sub K}, the susceptibility levels off or even decreases. This is interpreted as a compensation of the f-moment by the ligand conduction electrons that are believed to align anti-parallel to form a singlet state and has led to the widespread use of the Anderson Impurity Hamiltonian and the Single Impurity Model (SIM). Weak hybridization with these conduction electrons yields a narrow, highly temperature dependent, DOS at the Fermi energy, often referred to as the Kondo resonance (KR). At still lower temperatures it is generally agreed that in stoichiometric compounds a lattice of these singlet states finally results in extremely narrow bands at the Fermi energy, whose bandwidth is of the order k{sub B}T{sub K}. Clearly coherent bands cannot form above T{sub K} owing to the narrow width. A model for periodic Kondo systems will inevitably have to include the lattice. Preliminary PAM calculations indicate that this inclusion yields results differing qualitatively, rather than just quantitatively, from the SIM predictions. The photoemission data on single crystal heavy fermions are consistent with the following PAM predictions: (1) the temperature dependence of the KR is much slower than expected from the SIM; indeed, it is primarily7 due to broadening and Fermi function truncation; (2) the spectral weight of the KR relative to the localized 4f feature (not discussed here) is much larger than the SIM expectations (equivalently, n{sub f} values are far too small); (3) the KR and its sidebands does not lose spectral weight with T, but rather only broadens; (4) f-electrons in both Ce and U systems form narrow bands already far above T{sub K} (the jury is still out for Yb systems); (5) the width of these bands is much larger than k{sub B}T{sub K}; (6) f-character is obtained in only some regions of the Brillouin zone; i.e., momentum dependence of the KR above T{sub K}. While the PAM seems to predict the correct trends, they have no reason yet to rule out other models, such as those of Liu and Sheng and Cooper. Such discrimination may occur when the models develop sufficiently to allow real system calculations
A de Haas-van Alphen study of the filled skutterudite compounds PrOsAs and LaOsAs
Comprehensive magnetic-field-orientation dependent studies of the
susceptibility and de Haas-van Alphen effect have been carried out on single
crystals of the filled skutterudites PrOsAs and LaOsAs
using magnetic fields of up to 40~T. Several peaks are observed in the
low-field susceptibility of PrOsAs, corresponding to cascades of
metamagnetic transitions separating the low-field antiferromagnetic and
high-field paramagnetic metal (PMM) phases. The de Haas-van Alphen experiments
show that the Fermi-surface topologies of PrOsAs in its PMM phase
and LaOsAs are very similar. In addition, they are in reasonable
agreement with the predictions of bandstructure calculations for
LaOsAs on the PrOsAs lattice. Both observations suggest
that the Pr 4 electrons contribute little to the number of itinerant
quasiparticles in the PMM phase. However, whilst the properties of
LaOsAs suggest a conventional nonmagnetic Fermi liquid, the effects
of direct exchange and electron correlations are detected in the PMM phase of
PrOsAs. For example, the quasiparticle effective masses in
PrOsAs are found to decrease with increasing field, probably
reflecting the gradual suppression of magnetic fluctuations associated with
proximity to the low-temperature, low-field antiferromagnetic state
- …