14 research outputs found

    Two-time autocorrelation function in phase-ordering kinetics from local scale-invariance

    Full text link
    The time-dependent scaling of the two-time autocorrelation function of spin systems without disorder undergoing phase-ordering kinetics is considered. Its form is shown to be determined by an extension of dynamical scaling to a local scale-invariance which turns out to be a new version of conformal invariance. The predicted autocorrelator is in agreement with Monte-Carlo data on the autocorrelation function of the 2D kinetic Ising model with Glauber dynamics quenched to a temperature below criticality.Comment: Latex2e, 7 pages with 2 figures, with epl macro, final from, to appear in EP

    Ageing in the critical contact process: a Monte Carlo study

    Full text link
    The long-time dynamics of the critical contact process which is brought suddenly out of an uncorrelated initial state undergoes ageing in close analogy with quenched magnetic systems. In particular, we show through Monte Carlo simulations in one and two dimensions and through mean-field theory that time-translation invariance is broken and that dynamical scaling holds. We find that the autocorrelation and autoresponse exponents lambda_{Gamma} and lambda_R are equal but, in contrast to systems relaxing to equilibrium, the ageing exponents a and b are distinct. A recent proposal to define a non-equilibrium temperature through the short-time limit of the fluctuation-dissipation ratio is therefore not applicable.Comment: 18 pages, 7 figures, Latex2e with IOP macros; final for

    Local scale invariance as dynamical space-time symmetry in phase-ordering kinetics

    Full text link
    The scaling of the spatio-temporal response of coarsening systems is studied through simulations of the 2D and 3D Ising model with Glauber dynamics. The scaling functions agree with the prediction of local scale invariance, extending dynamical scaling to a space-time dynamical symmetry.Comment: Latex, 4 pages, 4 figure

    Ageing and dynamical scaling in the critical Ising spin glass

    Full text link
    The non-equilibrium ageing behaviour of the 3D and 4D critical Ising spin glass is studied for both binary and gaussian disorder. The same phenomenology of the time-dependent scaling as in non-disordered magnets is found but the non-equilibrium exponents and the universal limit fluctuation-dissipation ratio depend on the distribution of the coupling constants.Comment: Latex2e, 7 pages with epl macro, 4 figures included, final for

    Ageing, dynamical scaling and its extensions in many-particle systems without detailed balance

    Full text link
    Recent studies on the phenomenology of ageing in certain many-particle systems which are at a critical point of their non-equilibrium steady-states, are reviewed. Examples include the contact process, the parity-conserving branching-annihilating random walk, two exactly solvable particle-reaction models and kinetic growth models. While the generic scaling descriptions known from magnetic system can be taken over, some of the scaling relations between the ageing exponents are no longer valid. In particular, there is no obvious generalization of the universal limit fluctuation-dissipation ratio. The form of the scaling function of the two-time response function is compared with the prediction of the theory of local scale-invariance.Comment: Latex2e with IOP macros, 32 pages; extended discussion on contact process and new section on kinetic growth processe

    Ageing in disordered magnets and local scale-invariance

    Full text link
    The ageing of the bond-disordered two-dimensional Ising model quenched to below its critical point is studied through the two-time autocorrelator and thermoremanent magnetization (TRM). The corresponding ageing exponents are determined. The form of the scaling function of the TRM is well described by the theory of local scale-invariance.Comment: Latex2e, with epl macros, 7 pages, final for

    On the scaling and ageing behaviour of the alternating susceptibility in spin glasses and local scale-invariance

    Full text link
    The frequency-dependent scaling of the dispersive and dissipative parts of the alternating susceptibility is studied for spin glasses at criticality. An extension of the usual ωt\omega t-scaling is proposed. Simulational data from the three-dimensional Ising spin glass agree with this new scaling form and moreover reproduce well the scaling functions explicitly calculated for systems satisfying local scale-invariance. There is also a qualitative agreement with existing experimental data.Comment: 19 pages, 2 figures, to appear in special issue of J. Phys. Cond. Matt. dedicated to Lothar Schaefer on the occasion of his 60th birthday, final form with IOP macro

    Scaling of the magnetic linear response in phase-ordering kinetics

    Full text link
    The scaling of the thermoremanent magnetization and of the dissipative part of the non-equilibrium magnetic susceptibility is analysed as a function of the waiting-time ss for a simple ferromagnet undergoing phase-ordering kinetics after a quench into the ferromagnetically ordered phase. Their scaling forms describe the cross-over between two power-law regimes governed by the non-equilibrium exponents aa and λR/z\lambda_R/z, respectively. A relation between aa, the dynamical exponent zz and the equilibrium exponent η\eta is derived from scaling arguments. Explicit tests in the Glauber-Ising model and the kinetic spherical model are presented.Comment: 7 pages, 2 figures included, needs epl.cls, version to appear in Europhys. Let

    Ageing phenomena without detailed balance: the contact process

    Full text link
    The long-time dynamics of the 1D contact process suddenly brought out of an uncorrelated initial state is studied through a light-cone transfer-matrix renormalisation group approach. At criticality, the system undergoes ageing which is characterised through the dynamical scaling of the two-times autocorrelation and autoresponse functions. The observed non-equality of the ageing exponents a and b excludes the possibility of a finite fluctuation-dissipation ratio in the ageing regime. The scaling form of the critical autoresponse function is in agreement with the prediction of local scale-invariance.Comment: 20 pages, 15 figures, Latex2e with IOP macro

    Out-of-equilibrium properties of the semi-infinite kinetic spherical model

    Full text link
    We study the ageing properties of the semi-infinite kinetic spherical model at the critical point and in the ordered low-temperature phase, both for Dirichlet and Neumann boundary conditions. The surface fluctuation-dissipation ratio and the scaling functions of two-time surface correlation and response functions are determined explicitly in the dynamical scaling regime. In the low-temperature phase our results show that for the case of Dirichlet boundary conditions the value of the non-equilibrium surface exponent b1b_1 differs from the usual bulk value of systems undergoing phase ordering.Comment: 22 pages, 4 figures included, submitted to J. Phys.
    corecore