426 research outputs found

    Lattice-point enumerators of ellipsoids

    Full text link
    Minkowski's second theorem on successive minima asserts that the volume of a 0-symmetric convex body K over the covolume of a lattice \Lambda can be bounded above by a quantity involving all the successive minima of K with respect to \Lambda. We will prove here that the number of lattice points inside K can also accept an upper bound of roughly the same size, in the special case where K is an ellipsoid. Whether this is also true for all K unconditionally is an open problem, but there is reasonable hope that the inductive approach used for ellipsoids could be extended to all cases.Comment: 9 page

    Towards a Generic Model for MU-MIMO Analysis Including Mutual Coupling and Multipath Effects

    Get PDF
    A network model which accounts for antenna mutual coupling and multipath effects in a wireless channel is proposed as a tool to qualitatively evaluate the performance of a multi-user multiple-input multiple-output (MU-MIMO) system. The system performance is assessed when a zero-forcing (ZF) beamformed conventional uniform linear array (ULA) and a sparse array are employed as one sector of a base station antenna (BSA) in a single-cell network. It is shown that highly correlated user equipments (UEs) in a line-of-sight (LOS) scenario can be decorrelated to some extents, by a scattering environment in a non-line-of-sight (NLOS) scenario. This occurs due to increase of the spatial variation by a multipath effect. Furthermore, in both environments a sparse array realized by an increased interelement spacing is also capable for correlation reduction among users due to the narrower beams

    Finite-size Scaling and Universality above the Upper Critical Dimensionality

    Full text link
    According to renormalization theory, Ising systems above their upper critical dimensionality d_u = 4 have classical critical behavior and the ratio of magnetization moments Q = ^2 / has the universal value 0.456947... However, Monte Carlo simulations of d = 5 Ising models have been reported which yield strikingly different results, suggesting that the renormalization scenario is incorrect. We investigate this issue by simulation of a more general model in which d_u < 4, and a careful analysis of the corrections to scaling. Our results are in a perfect agreement with the renormalization theory and provide an explanation of the discrepancy mentioned.Comment: 5 pages RevTeX, 1 PostScript figure. Accepted for publication in Physical Review Letter

    Medium-range interactions and crossover to classical critical behavior

    Full text link
    We study the crossover from Ising-like to classical critical behavior as a function of the range R of interactions. The power-law dependence on R of several critical amplitudes is calculated from renormalization theory. The results confirm the predictions of Mon and Binder, which were obtained from phenomenological scaling arguments. In addition, we calculate the range dependence of several corrections to scaling. We have tested the results in Monte Carlo simulations of two-dimensional systems with an extended range of interaction. An efficient Monte Carlo algorithm enabled us to carry out simulations for sufficiently large values of R, so that the theoretical predictions could actually be observed.Comment: 16 pages RevTeX, 8 PostScript figures. Uses epsf.sty. Also available as PostScript and PDF file at http://www.tn.tudelft.nl/tn/erikpubs.htm

    Quantum Cosmology and Higher-Order Lagrangian Theories

    Get PDF
    In this paper the quantum cosmological consequences of introducing a term cubic in the Ricci curvature scalar RR into the Einstein--Hilbert action are investigated. It is argued that this term represents a more generic perturbation to the action than the quadratic correction usually considered. A qualitative argument suggests that there exists a region of parameter space in which neither the tunneling nor the no-boundary boundary conditions predict an epoch of inflation that can solve the horizon and flatness problems of the big bang model. This is in contrast to the R2R^2--theory.Comment: 13 pages, LaTeX, preprint FERMILAB-Pub-94/XXX-A, March 199

    An Optimization Problem Related to Minkowski’s Successive Minima

    Full text link

    Energetic and spatial bonding properties from angular distributions of ultraviolet photoelectrons: application to the GaAs(110) surface

    Full text link
    Angle-resolved ultraviolet photoemission spectra are interpreted by combining the energetics and spatial properties of the contributing states. One-step calculations are in excellent agreement with new azimuthal experimental data for GaAs(110). Strong variations caused by the dispersion of the surface bands permit an accurate mapping of the electronic structure. The delocalization of the valence states is discussed analogous to photoelectron diffraction. The spatial origin of the electrons is determined, and found to be strongly energy dependent, with uv excitation probing the bonding region.Comment: 5 pages, 3 figures, submitted for publicatio

    Holographic models for undoped Weyl semimetals

    Full text link
    We continue our recently proposed holographic description of single-particle correlation functions for four-dimensional chiral fermions with Lifshitz scaling at zero chemical potential, paying particular attention to the dynamical exponent z = 2. We present new results for the spectral densities and dispersion relations at non-zero momenta and temperature. In contrast to the relativistic case with z = 1, we find the existence of a quantum phase transition from a non-Fermi liquid into a Fermi liquid in which two Fermi surfaces spontaneously form, even at zero chemical potential. Our findings show that the boundary system behaves like an undoped Weyl semimetal.Comment: 64 pages, 19 figure

    Data-driven prioritization and preclinical evaluation of therapeutic targets in glioblastoma

    Get PDF
    Background: Patients with glioblastoma (GBM) have a dismal prognosis, and there is an unmet need for new therapeutic options. This study aims to identify new therapeutic targets in GBM. Methods: mRNA expression data of patient-derived GBM (n = 1279) and normal brain tissue (n = 46) samples were collected from Gene Expression Omnibus and The Cancer Genome Atlas. Functional genomic mRNA profiling was applied to capture the downstream effects of genomic alterations on gene expression levels. Next, a class comparison between GBM and normal brain tissue was performed. Significantly upregulated genes in GBM were further prioritized based on (1) known interactions with antineoplastic drugs, (2) current drug development status in humans, and (3) association with biologic pathways known to be involved in GBM. Antineoplastic agents against prioritized targets were validated in vitro and in vivo. Results: We identified 712 significantly upregulated genes in GBM compared to normal brain tissue, of which 27 have a known interaction with antineoplastic agents. Seventeen of the 27 genes, including EGFR and VEGFA, have been clinically evaluated in GBM with limited efficacy. For the remaining 10 genes, RRM2, MAPK9 (JNK2, SAPK1a), and XIAP play a role in GBM development. We demonstrated for the MAPK9 inhibitor RGB-286638 a viability loss in multiple GBM cell culture models. Although no overall survival benefit was observed in vivo, there were indications that RGB-286638 may delay tumor growth. Conclusions: The MAPK9 inhibitor RGB-286638 showed promising in vitro results. Furthermore, in vivo target engagement studies and combination therapies with this compound warrant further exploration
    • …
    corecore