131 research outputs found

    Forming individual magnetic biskyrmions by merging two skyrmions in a centrosymmetric nanodisk

    Get PDF
    When two magnetic skyrmions - whirl-like, topologically protected quasiparticles - form a bound pair, a biskyrmion state with a topological charge of NSk=±2N_\mathrm{Sk}=\pm 2 is constituted. Recently, especially the case of two partially overlapping skyrmions has brought about great research interest. Since for its formation the individual skyrmions need to posses opposite in-plane magnetizations, such a biskyrmion cannot be stabilized by the Dzyaloshinskii-Moriya-interaction (DMI), which is the interaction that typically stabilizes skyrmions in non-centrosymmetric materials and at interfaces. Here, we show that these biskyrmions can be stabilized by the dipole-dipole interaction in centrosymmetric materials in which the DMI is forbidden. Analytical considerations indicate that the bound state of a biskyrmion is energetically preferable over two individual skyrmions. As a result, when starting from two skyrmions in a micromagnetic simulation, a biskyrmion is formed upon relaxation. We propose a scheme that allows to control this biskyrmion formation in nanodisks and analyze the individual steps.Comment: This is a post-peer-review, pre-copyedit version of an article published in Scientific Reports. The final authenticated version is available online at [DOI

    Magnetoelectric effect and orbital magnetization in skyrmion crystals: Detection and characterization of skyrmions

    Full text link
    Skyrmions are small magnetic quasiparticles, which are uniquely characterized by their topological charge and their helicity. In this Rapid Communication, we show via calculations how both properties can be determined without relying on real-space imaging. The orbital magnetization and topological Hall conductivity measure the arising magnetization due to the circulation of electrons in the bulk and the occurrence of topologically protected edge channels due to the emergent field of a skyrmion crystal. Both observables quantify the topological Hall effect and distinguish skyrmions from antiskyrmions by sign. Additionally, we predict a magnetoelectric effect in skyrmion crystals, which is the generation of a magnetization (polarization) by application of an electric (magnetic) field. This effect is quantified by spin toroidization and magnetoelectric polarizability. The dependence of the transverse magnetoelectric effect on the skyrmion helicity fits that of the classical toroidal moment of the spin texture and allows to differentiate skyrmion helicities: it is largest for Bloch skyrmions and zero for Neel skyrmions. We predict distinct features of the four observables that can be used to detect and characterize skyrmions in experiments.Comment: 6 pages, 3 figure

    Antiferromagnetic skyrmion crystals: generation, topological Hall and topological spin Hall effect

    Full text link
    Skyrmions are topologically nontrivial, magnetic quasi-particles, that are characterized by a topological charge. A regular array of skyrmions - a skyrmion crystal (SkX) - features the topological Hall effect (THE) of electrons, that, in turn, gives rise to the Hall effect of the skyrmions themselves. It is commonly believed that antiferromagnetic skyrmion crystals (AFM-SkXs) lack both effects. In this Rapid Communication, we present a generally applicable method to create stable AFM-SkXs by growing a two sublattice SkX onto a collinear antiferromagnet. As an example we show that both types of skyrmion crystals - conventional and antiferromagnetic - exist in honeycomb lattices. While AFM-SkXs with equivalent lattice sites do not show a THE, they exhibit a topological spin Hall effect. On top of this, AFM-SkXs on inequivalent sublattices exhibit a nonzero THE, which may be utilized in spintronics devices. Our theoretical findings call for experimental realization.Comment: 5 pages, 5 figure

    Overcoming the speed limit in skyrmion racetrack devices by suppressing the skyrmion Hall effect

    Full text link
    Magnetic skyrmions are envisioned as carriers of information in racetrack storage devices. Unfavorably, the skyrmion Hall effect hinders the fast propagation of skyrmions along an applied electric current and limits the device's maximum operation speed. In this Rapid Communication, we show that the maximum skyrmion velocity increases by a factor of 10 when the skyrmion Hall effect is suppressed, since the straight-line motion of the skyrmion allows for the application of larger driving currents. We consider a ferromagnet on a heavy metal layer, which converts the applied charge current into a spin current by the spin Hall effect. The spin current drives the skyrmions in the ferromagnet via spin-orbit torque. We show by analytical considerations and simulations that the deflection angle decreases, when the spin current is polarized partially along the applied current direction and derive the condition for complete suppression of the skyrmion Hall effect.Comment: 6 pages, 3 figure

    Spin Seebeck and Spin Nernst Effects of Magnons in Noncollinear Antiferromagnetic Insulators

    Full text link
    Our joint theoretical and computer experimental study of heat-to-spin conversion reveals that noncollinear antiferromagnetic insulators are promising materials for generating magnon spin currents upon application of a temperature gradient: they exhibit spin Seebeck and spin Nernst effects. Using Kubo theory and spin dynamics simulations, we explicitly evaluate these effects in a single kagome sheet of potassium iron jarosite, KFe3_3(OH)6_6(SO4_4)2_2, and predict a spin Seebeck conversion factor of 0.2μV/K0.2 \mu\mathrm{V}/\mathrm{K} at a temperature of 20K20 \mathrm{K}.Comment: 6 pages, 3 figure

    Tailoring tunnel magnetoresistance by ultrathin Cr and Co interlayers: A first-principles investigation of Fe/MgO/Fe junctions

    Full text link
    We report on systematic ab-initio investigations of Co and Cr interlayers embedded in Fe(001)/MgO/Fe(001) magnetic tunnel junctions, focusing on the changes of the electronic structure and the transport properties with interlayer thickness. The results of spin-dependent ballistic transport calculations reveal options to specifically manipulate the tunnel magnetoresistance ratio. The resistance area products and the tunnel magnetoresistance ratios show a monotonous trend with distinct oscillations as a function of the Cr thickness. These modulations are directly addressed and interpreted by means of magnetic structures in the Cr films and by complex band structure effects. The characteristics for embedded Co interlayers are considerably influenced by interface resonances which are analyzed by the local electronic structure
    • …
    corecore