106 research outputs found

    Decay Process for Three - Species Reaction - Diffusion System

    Full text link
    We propose the deterministic rate equation of three-species in the reaction - diffusion system. For this case, our purpose is to carry out the decay process in our three-species reaction-diffusion model of the form A+B+CDA+B+C\to D. The particle density and the global reaction rate are also shown analytically and numerically on a two-dimensional square lattice with the periodic boundary conditions. Especially, the crossover of the global reaction rate is discussed in both early-time and long-time regimes.Comment: 6 pages, 3 figures, Late

    Reaction-diffusion fronts with inhomogeneous initial conditions

    Full text link
    Properties of reaction zones resulting from A+B -> C type reaction-diffusion processes are investigated by analytical and numerical methods. The reagents A and B are separated initially and, in addition, there is an initial macroscopic inhomogeneity in the distribution of the B species. For simple two-dimensional geometries, exact analytical results are presented for the time-evolution of the geometric shape of the front. We also show using cellular automata simulations that the fluctuations can be neglected both in the shape and in the width of the front.Comment: 11 pages, 3 figures, submitted to J. Phys.

    Liesegang patterns: Effect of dissociation of the invading electrolyte

    Full text link
    The effect of dissociation of the invading electrolyte on the formation of Liesegang bands is investigated. We find, using organic compounds with known dissociation constants, that the spacing coefficient, 1+p, that characterizes the position of the n-th band as x_n ~ (1+p)^n, decreases with increasing dissociation constant, K_d. Theoretical arguments are developed to explain these experimental findings and to calculate explicitly the K_d dependence of 1+p.Comment: RevTex, 8 pages, 3 eps figure

    Formation of Liesegang patterns: A spinodal decomposition scenario

    Full text link
    Spinodal decomposition in the presence of a moving particle source is proposed as a mechanism for the formation of Liesegang bands. This mechanism yields a sequence of band positions x_n that obeys the spacing law x_n~Q(1+p)^n. The dependence of the parameters p and Q on the initial concentration of the reagents is determined and we find that the functional form of p is in agreement with the experimentally observed Matalon-Packter law.Comment: RevTex, 4 pages, 4 eps figure

    Diffusion-Limited Annihilation with Initially Separated Reactants

    Full text link
    A diffusion-limited annihilation process, A+B->0, with species initially separated in space is investigated. A heuristic argument suggests the form of the reaction rate in dimensions less or equal to the upper critical dimension dc=2d_c=2. Using this reaction rate we find that the width of the reaction front grows as t1/4t^{1/4} in one dimension and as t1/6(lnt)1/3t^{1/6}(\ln t)^{1/3} in two dimensions.Comment: 9 pages, Plain Te
    corecore