14 research outputs found

    Thiosuccinyl Peptides as Sirt5-Specific Inhibitors

    No full text
    Sirtuins, a class of enzymes known as nicotinamide adenine dinucleotide-dependent deacetylases, have been shown to regulate a variety of biological processes, including aging, transcription, and metabolism. Sirtuins are considered promising targets for treating several human diseases. There are seven sirtuins in humans (Sirt1–7). Small molecules that can target a particular human sirtuin are important for drug development and fundamental studies of sirtuin biology. Here we demonstrate that thiosuccinyl peptides are potent and selective Sirt5 inhibitors. The design of these inhibitors is based on our recent discovery that Sirt5 prefers to catalyze the hydrolysis of malonyl and succinyl groups, rather than an acetyl group, from lysine residues. Furthermore, among the seven human sirtuins, Sirt5 is the only one that has this unique acyl group preference. This study demonstrates that the different acyl group preferences of different sirtuins can be conveniently utilized to develop small molecules that selectively target different sirtuins

    Iso-ADP-Ribose Fluorescence Polarization Probe for the Screening of RNF146 WWE Domain Inhibitors

    No full text
    Poly-ADP-ribosylation is an important protein post-translational modification with diverse biological consequences. After binding poly-ADP-ribose on axis inhibition protein 1 (AXIN1) through its WWE domain, RING finger protein 146 (RNF146) can ubiquitinate AXIN1 and promote its proteasomal degradation and thus the oncogenic WNT signaling. Therefore, inhibiting the RNF146 WWE domain is a potential antitumor strategy. However, due to a lack of suitable screening methods, no inhibitors for this domain have been reported. Here, we developed a fluorescence polarization (FP)-based competition assay for the screening of RNF146 WWE inhibitors. This assay relies on a fluorescently tagged iso-ADP-ribose tracer compound, TAMRA-isoADPr. We report the design and synthesis of this tracer compound and show that it is a high-affinity tracer for the RNF146 WWE domain. This provides a convenient assay and will facilitate the development of small-molecule inhibitors for the RNF146 WWE domain

    Iso-ADP-Ribose Fluorescence Polarization Probe for the Screening of RNF146 WWE Domain Inhibitors

    No full text
    Poly-ADP-ribosylation is an important protein post-translational modification with diverse biological consequences. After binding poly-ADP-ribose on axis inhibition protein 1 (AXIN1) through its WWE domain, RING finger protein 146 (RNF146) can ubiquitinate AXIN1 and promote its proteasomal degradation and thus the oncogenic WNT signaling. Therefore, inhibiting the RNF146 WWE domain is a potential antitumor strategy. However, due to a lack of suitable screening methods, no inhibitors for this domain have been reported. Here, we developed a fluorescence polarization (FP)-based competition assay for the screening of RNF146 WWE inhibitors. This assay relies on a fluorescently tagged iso-ADP-ribose tracer compound, TAMRA-isoADPr. We report the design and synthesis of this tracer compound and show that it is a high-affinity tracer for the RNF146 WWE domain. This provides a convenient assay and will facilitate the development of small-molecule inhibitors for the RNF146 WWE domain

    Comparative Nucleotide-Dependent Interactome Analysis Reveals Shared and Differential Properties of KRas4a and KRas4b

    No full text
    The KRAS gene encodes two isoforms, KRas4a and KRas4b. Differences in the signaling functions of the two KRas proteins are poorly understood. Here we report the comparative and nucleotide-dependent interactomes of KRas4a and KRas4b. Many previously unknown interacting proteins were identified, with some interacting with both isoforms while others prefer only one. For example, v-ATPase a2 and eIF2Bδ interact with only KRas4b. Consistent with the v-ATPase interaction, KRas4b has a significant lysosomal localization. Comparing WT and constitutively active G12D mutant KRas, we examined differences in the effector proteins of the KRas4a and KRas4b. Interestingly, KRas4a binds RAF1 stronger than KRas4b. Correspondingly, KRas4a can better promote ERK phosphorylation and anchorage-independent growth than KRas4b. The interactome data represent a useful resource to understand the differences between KRas4a and KRas4b and to discover new function or regulation for them. A similar proteomic approach would be useful for studying numerous other small GTPases

    Comparative Nucleotide-Dependent Interactome Analysis Reveals Shared and Differential Properties of KRas4a and KRas4b

    No full text
    The KRAS gene encodes two isoforms, KRas4a and KRas4b. Differences in the signaling functions of the two KRas proteins are poorly understood. Here we report the comparative and nucleotide-dependent interactomes of KRas4a and KRas4b. Many previously unknown interacting proteins were identified, with some interacting with both isoforms while others prefer only one. For example, v-ATPase a2 and eIF2Bδ interact with only KRas4b. Consistent with the v-ATPase interaction, KRas4b has a significant lysosomal localization. Comparing WT and constitutively active G12D mutant KRas, we examined differences in the effector proteins of the KRas4a and KRas4b. Interestingly, KRas4a binds RAF1 stronger than KRas4b. Correspondingly, KRas4a can better promote ERK phosphorylation and anchorage-independent growth than KRas4b. The interactome data represent a useful resource to understand the differences between KRas4a and KRas4b and to discover new function or regulation for them. A similar proteomic approach would be useful for studying numerous other small GTPases

    Dph7 Catalyzes a Previously Unknown Demethylation Step in Diphthamide Biosynthesis

    No full text
    Present on archaeal and eukaryotic translation elongation factor 2, diphthamide represents one of the most intriguing post-translational modifications on proteins. The biosynthesis of diphthamide was proposed to occur in three steps requiring seven proteins, Dph1–7, in eukaryotes. The functional assignments of Dph1–5 in the first and second step have been well established. Recent studies suggest that Dph6 (yeast YLR143W or human ATPBD4) and Dph7 (yeast YBR246W or human WDR85) are involved in the last amidation step, with Dph6 being the actual diphthamide synthetase catalyzing the ATP-dependent amidation reaction. However, the exact molecular role of Dph7 is unclear. Here we demonstrate that Dph7 is an enzyme catalyzing a previously unknown step in the diphthamide biosynthesis pathway. This step is between the Dph5- and Dph6-catalyzed reactions. We demonstrate that the Dph5-catalyzed reaction generates methylated diphthine, a previously overlooked intermediate, and Dph7 is a methylesterase that hydrolyzes methylated diphthine to produce diphthine and allows the Dph6-catalyzed amidation reaction to occur. Thus, our study characterizes the molecular function of Dph7 for the first time and provides a revised diphthamide biosynthesis pathway

    SIRT2 Reverses 4‑Oxononanoyl Lysine Modification on Histones

    No full text
    Post-translational modifications (PTMs) regulate numerous proteins and are important for many biological processes. Lysine 4-oxononanoylation (4-ONylation) is a newly discovered histone PTM that prevents nucleosome assembly under oxidative stress. Whether there are cellular enzymes that remove 4-ONyl from histones remains unknown, which hampers the further investigation of the cellular function of this PTM. Here, we report that mammalian SIRT2 can remove 4-ONyl from histones and other proteins in live cells. A crystal structure of SIRT2 in complex with a 4-ONyl peptide reveals a lone pair−π interaction between Phe119 and the ketone oxygen of the 4-ONyl group. This is the first time that a mechanism to reverse 4-ONyl lysine modification is reported and will help to understand the role of SIRT2 in oxidative stress responses and the function of 4-ONylation

    YBR246W Is Required for the Third Step of Diphthamide Biosynthesis

    No full text
    Diphthamide, the target of diphtheria toxin, is a post-translationally modified histidine residue that is found in archaeal and eukaryotic translation elongation factor 2. The biosynthesis and function of this modification has attracted the interest of many biochemists for decades. The biosynthesis has been known to proceed in three steps. Proteins required for the first and second steps have been identified, but the protein­(s) required for the last step have remained elusive. Here we demonstrate that the YBR246W gene in yeast is required for the last step of diphthamide biosynthesis, as the deletion of YBR246W leads to the accumulation of diphthine, which is the enzymatic product of the second step of the biosynthesis. This discovery will provide important information leading to the complete elucidation of the full biosynthesis pathway of diphthamide

    <i>Plasmodium falciparum</i> Sir2A Preferentially Hydrolyzes Medium and Long Chain Fatty Acyl Lysine

    No full text
    <i>Plasmodium falciparum</i> Sir2A (PfSir2A), a member of the sirtuin family of nicotinamide adenine dinucleotide-dependent deacetylases, has been shown to regulate the expression of surface antigens to evade the detection by host immune surveillance. It is thought that PfSir2A achieves this by deacetylating histones. However, the deacetylase activity of PfSir2A is weak. Here we present enzymology and structural evidence supporting that PfSir2A catalyzes the hydrolysis of medium and long chain fatty acyl groups from lysine residues more efficiently. Furthermore, <i>P. falciparum</i> proteins are found to contain such fatty acyl lysine modifications that can be removed by purified PfSir2A <i>in vitro</i>. Together, the data suggest that the physiological function of PfSir2A in antigen variation may be achieved by removing medium and long chain fatty acyl groups from protein lysine residues. The robust activity of PfSir2A would also facilitate the development of PfSir2A inhibitors, which may have therapeutic value in malaria treatment

    HDAC8 Catalyzes the Hydrolysis of Long Chain Fatty Acyl Lysine

    No full text
    The histone deacetylase (HDAC) family regulates many biological pathways through the deacetylation of lysine residues on histone and nonhistone proteins. Mammals have 18 HDACs that are classified into four classes. Class I, II, and IV are zinc-dependent, while class III is nicotinamide adenine dinucleotide (NAD<sup>+</sup>)-dependent lysine deacetylase or sirtuins. HDAC8, a class I HDAC family member, has been shown to have low deacetylation activity compared to other HDACs <i>in vitro.</i> Recent studies showed that several sirtuins, with low deacetylase activities, can actually hydrolyze other acyl lysine modifications more efficiently. Inspired by this, we tested the activity of HDAC8 using a variety of different acyl lysine peptides. Screening a panel of peptides with different acyl lysine modifications, we found that HDAC8 can catalyze the removal of acyl groups with 2–16 carbons from lysine 9 of the histone H3 peptide (H3K9). Interestingly, the catalytic efficiencies (<i>k</i><sub>cat</sub>/<i>K</i><sub>m</sub>) of HDAC8 on octanoyl, dodecanoyl, and myristoyl lysine are several-fold better than that on acetyl lysine. The increased catalytic efficiencies of HDAC8 on larger fatty acyl groups are due to the much lower <i>K</i><sub>m</sub> values. T-cell leukemia Jurkat cells treated with a HDAC8 specific inhibitor, PCI-34051, exhibited an increase in global fatty acylation compared to control treatment. Thus, the de-fatty-acylation activity of HDAC8 is likely physiologically relevant. This is the first report of a zinc-dependent HDAC with de-fatty-acylation activity, and identification of HDAC8 de-fatty-acylation targets will help to further understand the function of HDAC8 and protein lysine fatty acylation
    corecore