5 research outputs found

    A Cross-Tissue Investigation of Molecular Targets and Physiological Functions of Nsun6 Using Knockout Mice

    Get PDF
    The 5-methylcytosine (m5C) modification on an mRNA molecule is deposited by Nsun2 and its paralog Nsun6. While the physiological functions of Nsun2 have been carefully studied using gene knockout (KO) mice, the physiological functions of Nsun6 remain elusive. In this study, we generated an Nsun6-KO mouse strain, which exhibited no apparent phenotype in both the development and adult stages as compared to wild-type mice. Taking advantage of this mouse strain, we identified 80 high-confident Nsun6-dependent m5C sites by mRNA bisulfite sequencing in five different tissues and systematically analyzed the transcriptomic phenotypes of Nsun6-KO tissues by mRNA sequencing. Our data indicated that Nsun6 is not required for the homeostasis of these organs under laboratory housing conditions, but its loss may affect immune response in the spleen and oxidoreductive reaction in the liver under certain conditions. Additionally, we further investigated T-cell-dependent B cell activation in KO mice and found that Nsun6 is not essential for the germinal center B cell formation but is associated with the formation of antibody-secreting plasma cells. Finally, we found that Nsun6-mediated m5C modification does not have any evident influence on the stability of Nsun6 target mRNAs, suggesting that Nsun6-KO-induced phenotypes may be associated with other functions of the m5C modification or Nsun6 protein

    Research on the changes of physiological characteristics of algal cells in the process of algae dissolving by immobilized white rot fungi

    No full text
    With the increasing of water pollution, water eutrophication is seriously affecting people’s daily life and production. Therefore, it is particularly important to explore safe and efficient algae control technology. In the current algal bloom treatment methods, the physical method is not complete in algae dissolving, and the cost of algal control is high. The chemical method is easy to produce secondary pollution and toxic by-products, and the safety is not high. However, the biological method has the advantages of low cost, high ecological security and good ecological compatibility. It is considered to be a more promising method to remove algae and biological toxins, and it is also an inevitable trend to control water eutrophication in the future

    Study on the Effect of Two-Phase Anaerobic Co-Digestion of Rice Straw and Rural Sludge on Hydrogen and Methane Production

    No full text
    Hydrogen and methane, as chemical raw materials with broad application prospects in the future market, can be produced by the two-phase anaerobic co-digestion of rice straw and sludge. The study was carried out using a medium-temperature batch experiment with rice straw, a rural crop residue from Sichuan, and residual sludge from a sewage treatment station. The effect of the mixing ratio of rice straw and rural sludge on hydrogen and methane production from anaerobic digestion was investigated with a view to alleviating the energy crisis and efficient resource utilization. The experimental results showed that hydrogen production was most favorable when rice straw/sludge = 5:1, with a cumulative hydrogen yield as high as 38.59 ± 1.12 mL/g VSadded, while methane production was most favorable when 3:1, with a cumulative methane yield as high as 578.21 ± 29.19 mL/g VSadded. By calculating the energy yield, it was determined that 3:1 is more favorable for the two-phase anaerobic digestion capacity of rice straw and sludge, which is as high as 20.88 ± 1.07 kJ/g VSadded, and its conversion of hydrogen and methane is 0.75% and 78.19%, respectively. The hydrogen production pathway was dominated by the butyric acid type, whose hydrogen production phase pH (5.84 ± 0.13) was slightly higher than the optimal pH for hydrogen-producing bacteria, while the methanogenic phase could meet the optimal pH for methanogenic bacteria (6.93 ± 0.17)

    A Cross-Tissue Investigation of Molecular Targets and Physiological Functions of Nsun6 Using Knockout Mice

    Get PDF
    The 5-methylcytosine (m5C) modification on an mRNA molecule is deposited by Nsun2 and its paralog Nsun6. While the physiological functions of Nsun2 have been carefully studied using gene knockout (KO) mice, the physiological functions of Nsun6 remain elusive. In this study, we generated an Nsun6-KO mouse strain, which exhibited no apparent phenotype in both the development and adult stages as compared to wild-type mice. Taking advantage of this mouse strain, we identified 80 high-confident Nsun6-dependent m5C sites by mRNA bisulfite sequencing in five different tissues and systematically analyzed the transcriptomic phenotypes of Nsun6-KO tissues by mRNA sequencing. Our data indicated that Nsun6 is not required for the homeostasis of these organs under laboratory housing conditions, but its loss may affect immune response in the spleen and oxidoreductive reaction in the liver under certain conditions. Additionally, we further investigated T-cell-dependent B cell activation in KO mice and found that Nsun6 is not essential for the germinal center B cell formation but is associated with the formation of antibody-secreting plasma cells. Finally, we found that Nsun6-mediated m5C modification does not have any evident influence on the stability of Nsun6 target mRNAs, suggesting that Nsun6-KO-induced phenotypes may be associated with other functions of the m5C modification or Nsun6 protein
    corecore