7,606 research outputs found

    Very large magnetoresistance in Fe0.28_{0.28}TaS2_{2} single crystals

    Full text link
    Magnetic moments intercalated into layered transition metal dichalcogenides are an excellent system for investigating the rich physics associated with magnetic ordering in a strongly anisotropic, strong spin-orbit coupling environment. We examine electronic transport and magnetization in Fe0.28_{0.28}TaS2_{2}, a highly anisotropic ferromagnet with a Curie temperature TC68.8 T_{\mathrm{C}} \sim 68.8~K. We find anomalous Hall data confirming a dominance of spin-orbit coupling in the magnetotransport properties of this material, and a remarkably large field-perpendicular-to-plane MR exceeding 60% at 2 K, much larger than the typical MR for bulk metals, and comparable to state-of-the-art GMR in thin film heterostructures, and smaller only than CMR in Mn perovskites or high mobility semiconductors. Even within the Fex_xTaS2_2 series, for the current xx = 0.28 single crystals the MR is nearly 100×100\times higher than that found previously in the commensurate compound Fe0.25_{0.25}TaS2_{2}. After considering alternatives, we argue that the large MR arises from spin disorder scattering in the strong spin-orbit coupling environment, and suggest that this can be a design principle for materials with large MR.Comment: 8 pages, 8 figures, accepted in PR

    Deterministic quantum teleportation between distant atomic objects

    Full text link
    Quantum teleportation is a key ingredient of quantum networks and a building block for quantum computation. Teleportation between distant material objects using light as the quantum information carrier has been a particularly exciting goal. Here we demonstrate a new element of the quantum teleportation landscape, the deterministic continuous variable (cv) teleportation between distant material objects. The objects are macroscopic atomic ensembles at room temperature. Entanglement required for teleportation is distributed by light propagating from one ensemble to the other. Quantum states encoded in a collective spin state of one ensemble are teleported onto another ensemble using this entanglement and homodyne measurements on light. By implementing process tomography, we demonstrate that the experimental fidelity of the quantum teleportation is higher than that achievable by any classical process. Furthermore, we demonstrate the benefits of deterministic teleportation by teleporting a dynamically changing sequence of spin states from one distant object onto another

    Approximating the monomer-dimer constants through matrix permanent

    Full text link
    The monomer-dimer model is fundamental in statistical mechanics. However, it is #P-complete in computation, even for two dimensional problems. A formulation in matrix permanent for the partition function of the monomer-dimer model is proposed in this paper, by transforming the number of all matchings of a bipartite graph into the number of perfect matchings of an extended bipartite graph, which can be given by a matrix permanent. Sequential importance sampling algorithm is applied to compute the permanents. For two-dimensional lattice with periodic condition, we obtain 0.6627±0.0002 0.6627\pm0.0002, where the exact value is h2=0.662798972834h_2=0.662798972834. For three-dimensional lattice with periodic condition, our numerical result is 0.7847±0.0014 0.7847\pm0.0014, {which agrees with the best known bound 0.7653h30.78620.7653 \leq h_3 \leq 0.7862.}Comment: 6 pages, 2 figure

    Controlling complex networks: How much energy is needed?

    Full text link
    The outstanding problem of controlling complex networks is relevant to many areas of science and engineering, and has the potential to generate technological breakthroughs as well. We address the physically important issue of the energy required for achieving control by deriving and validating scaling laws for the lower and upper energy bounds. These bounds represent a reasonable estimate of the energy cost associated with control, and provide a step forward from the current research on controllability toward ultimate control of complex networked dynamical systems.Comment: 4 pages paper + 5 pages supplement. accepted for publication in Physical Review Letters; http://link.aps.org/doi/10.1103/PhysRevLett.108.21870

    Punctured polygons and polyominoes on the square lattice

    Full text link
    We use the finite lattice method to count the number of punctured staircase and self-avoiding polygons with up to three holes on the square lattice. New or radically extended series have been derived for both the perimeter and area generating functions. We show that the critical point is unchanged by a finite number of punctures, and that the critical exponent increases by a fixed amount for each puncture. The increase is 1.5 per puncture when enumerating by perimeter and 1.0 when enumerating by area. A refined estimate of the connective constant for polygons by area is given. A similar set of results is obtained for finitely punctured polyominoes. The exponent increase is proved to be 1.0 per puncture for polyominoes.Comment: 36 pages, 11 figure

    Can phoretic particles swim in two dimensions?

    Get PDF
    Artificial phoretic particles swim using self-generated gradients in chemical species (self-diffusiophoresis) or charges and currents (self-electrophoresis). These particles can be used to study the physics of collective motion in active matter and might have promising applications in bioengineering. In the case of self-diffusiophoresis, the classical physical model relies on a steady solution of the diffusion equation, from which chemical gradients, phoretic flows, and ultimately the swimming velocity may be derived. Motivated by disk-shaped particles in thin films and under confinement, we examine the extension to two dimensions. Because the two-dimensional diffusion equation lacks a steady state with the correct boundary conditions, Laplace transforms must be used to study the long-time behavior of the problem and determine the swimming velocity. For fixed chemical fluxes on the particle surface, we find that the swimming velocity ultimately always decays logarithmically in time. In the case of finite Péclet numbers, we solve the full advection-diffusion equation numerically and show that this decay can be avoided by the particle moving to regions of unconsumed reactant. Finite advection thus regularizes the two-dimensional phoretic problem.The research was supported by NSF Grants DMS-1109315 and DMS-1147523 (Madison) and by the European Union through a CIG grant (Cambridge)

    The Dynamical Yang-Baxter Relation and the Minimal Representation of the Elliptic Quantum Group

    Full text link
    In this paper, we give the general forms of the minimal LL matrix (the elements of the LL-matrix are cc numbers) associated with the Boltzmann weights of the An11A_{n-1}^1 interaction-round-a-face (IRF) model and the minimal representation of the An1A_{n-1} series elliptic quantum group given by Felder and Varchenko. The explicit dependence of elements of LL-matrices on spectral parameter zz are given. They are of five different forms (A(1-4) and B). The algebra for the coefficients (which do not depend on zz) are given. The algebra of form A is proved to be trivial, while that of form B obey Yang-Baxter equation (YBE). We also give the PBW base and the centers for the algebra of form B.Comment: 23 page
    corecore