research

Very large magnetoresistance in Fe0.28_{0.28}TaS2_{2} single crystals

Abstract

Magnetic moments intercalated into layered transition metal dichalcogenides are an excellent system for investigating the rich physics associated with magnetic ordering in a strongly anisotropic, strong spin-orbit coupling environment. We examine electronic transport and magnetization in Fe0.28_{0.28}TaS2_{2}, a highly anisotropic ferromagnet with a Curie temperature TC68.8 T_{\mathrm{C}} \sim 68.8~K. We find anomalous Hall data confirming a dominance of spin-orbit coupling in the magnetotransport properties of this material, and a remarkably large field-perpendicular-to-plane MR exceeding 60% at 2 K, much larger than the typical MR for bulk metals, and comparable to state-of-the-art GMR in thin film heterostructures, and smaller only than CMR in Mn perovskites or high mobility semiconductors. Even within the Fex_xTaS2_2 series, for the current xx = 0.28 single crystals the MR is nearly 100×100\times higher than that found previously in the commensurate compound Fe0.25_{0.25}TaS2_{2}. After considering alternatives, we argue that the large MR arises from spin disorder scattering in the strong spin-orbit coupling environment, and suggest that this can be a design principle for materials with large MR.Comment: 8 pages, 8 figures, accepted in PR

    Similar works