786 research outputs found

    Assisted state discrimination without entanglement

    Full text link
    It is shown that the dissonance, a quantum correlation which is equal to quantum discord for separable state, is required for assisted optimal state discrimination. We find that only one side discord is required in the optimal process of assisted state discrimination, while another side discord and entanglement is not necessary. We confirm that the quantum discord, which is asymmetric depending on local measurements, is a resource for assisted state discrimination. With the absence of entanglement, we give the necessary and sufficient condition for vanishing one side discord in assisted state discrimination for a class of dd nonorthogonal states. As a byproduct, we find that the positive-partial-transposition (PPT) condition is the necessary and sufficient condition for the separability of a class of 2×d2\times d states.Comment: 6 page

    Prediction of Post-Operative Renal and Pulmonary Complication Using Transformers

    Full text link
    Postoperative complications pose a significant challenge in the healthcare industry, resulting in elevated healthcare expenses and prolonged hospital stays, and in rare instances, patient mortality. To improve patient outcomes and reduce healthcare costs, healthcare providers rely on various perioperative risk scores to guide clinical decisions and prioritize care. In recent years, machine learning techniques have shown promise in predicting postoperative complications and fatality, with deep learning models achieving remarkable success in healthcare applications. However, research on the application of deep learning models to intra-operative anesthesia management data is limited. In this paper, we evaluate the performance of transformer-based models in predicting postoperative acute renal failure, postoperative pulmonary complications, and postoperative in-hospital mortality. We compare our method's performance with state-of-the-art tabular data prediction models, including gradient boosting trees and sequential attention models, on a clinical dataset. Our results demonstrate that transformer-based models can achieve superior performance in predicting postoperative complications and outperform traditional machine learning models. This work highlights the potential of deep learning techniques, specifically transformer-based models, in revolutionizing the healthcare industry's approach to postoperative care

    Deterministic versus probabilistic quantum information masking

    Full text link
    We investigate quantum information masking for arbitrary dimensional quantum states. We show that mutually orthogonal quantum states can always be served for deterministic masking of quantum information. We further construct a probabilistic masking machine for linearly independent states. It is shown that a set of d dimensional states, {∣a1⟩A,∣ta2⟩A,…,∣an⟩A}\{ |a_1 \rangle_A, |t a_2 \rangle_A, \dots, |a_n \rangle_A \}, n≤dn \leq d, can be probabilistically masked by a general unitary-reduction operation if they are linearly independent. The maximal successful probability of probabilistic masking is analyzed and derived for the case of two initial states.Comment: 5 pages, 1 figure
    • …
    corecore