22 research outputs found

    Replacement of Retinyl Esters by Polyunsaturated Triacylglycerol Species in Lipid Droplets of Hepatic Stellate Cells during Activation

    Get PDF
    Activation of hepatic stellate cells has been recognized as one of the first steps in liver injury and repair. During activation, hepatic stellate cells transform into myofibroblasts with concomitant loss of their lipid droplets (LDs) and production of excessive extracellular matrix. Here we aimed to obtain more insight in the dynamics and mechanism of LD loss. We have investigated the LD degradation processes in rat hepatic stellate cells in vitro with a combined approach of confocal Raman microspectroscopy and mass spectrometric analysis of lipids (lipidomics). Upon activation of the hepatic stellate cells, LDs reduce in size, but increase in number during the first 7 days, but the total volume of neutral lipids did not decrease. The LDs also migrate to cellular extensions in the first 7 days, before they disappear. In individual hepatic stellate cells. all LDs have a similar Raman spectrum, suggesting a similar lipid profile. However, Raman studies also showed that the retinyl esters are degraded more rapidly than the triacylglycerols upon activation. Lipidomic analyses confirmed that after 7 days in culture hepatic stellate cells have lost most of their retinyl esters, but not their triacylglycerols and cholesterol esters. Furthermore, we specifically observed a large increase in triacylglycerol-species containing polyunsaturated fatty acids, partly caused by an enhanced incorporation of exogenous arachidonic acid. These results reveal that lipid droplet degradation in activated hepatic stellate cells is a highly dynamic and regulated process. The rapid replacement of retinyl esters by polyunsaturated fatty acids in LDs suggests a role for both lipids or their derivatives like eicosanoids during hepatic stellate cell activation

    Insight in modulation of inflammation in response to diclofenac intervention: a human intervention study

    Get PDF
    Background. Chronic systemic low-grade inflammation in obese subjects is associated with health complications including cardiovascular diseases, insulin resistance and diabetes. Reducing inflammatory responses may reduce these risks. However, available markers of inflammatory status inadequately describe the complexity of metabolic responses to mild anti-inflammatory therapy. Methods. To address this limitation, we used an integrative omics approach to characterize modulation of inflammation in overweight men during an intervention with the non-steroidal anti-inflammatory drug diclofenac. Measured parameters included 80 plasma proteins, >300 plasma metabolites (lipids, free fatty acids, oxylipids and polar compounds) and an array of peripheral blood mononuclear cells (PBMC) gene expression products. These measures were submitted to multivariate and correlation analysis and were used for construction of biological response networks. Results. A panel of genes, proteins and metabolites, including PGE2 and TNF-alpha, were identified that describe a diclofenac-response network (68 genes in PBMC, 1 plasma protein and 4 plasma metabolites). Novel candidate markers of inflammatory modulation included PBMC expression of annexin A1 and caspase 8, and the arachidonic acid metabolite 5,6-DHET. Conclusion. In this study the integrated analysis of a wide range of parameters allowed the development of a network of markers responding to inflammatory modulation, thereby providing insight into the complex process of inflammation and ways to assess changes in inflammatory status associated with obesity. Trial registration. The study is registered as NCT00221052 in clinicaltrials.gov database. © 2010 van Erk et al; licensee BioMed Central Ltd

    The Noncaloric Sweetener Rebaudioside A Stimulates Glucagon-Like Peptide 1 Release and Increases Enteroendocrine Cell Numbers in 2-Dimensional Mouse Organoids Derived from Different Locations of the Intestine

    No full text
    BACKGROUND: Glucagon-like peptide 1 (GLP-1) contributes to satiety and plays a pivotal role in insulin secretion and glucose homeostasis. Similar to GLP-1, peptide YY (PYY) and cholecystokinin also influence food intake. The secretion of these hormones by enteroendocrine cells along the intestine is modulated by nutrients. Preparations from the Stevia rebaudiana plant, including rebaudioside A, are increasingly being used as noncaloric sweeteners. OBJECTIVE: We investigated the effects of rebaudioside A on enteroendocrine cells by assessing both cell numbers as well as their secretory capacity in an organoid model. METHODS: A 2-dimensional organoid model derived from duodenal, jejunal, and ileal crypts of a C57BL/6J mouse was developed and characterized with the use of gene expression and immunofluorescence. We stimulated these organoids with 10 mmol/L rebaudioside A for 1 h and measured their GLP-1, PYY, and cholecystokinin release. We also analyzed the effects of rebaudioside A on gene expression in enteroendocrine cells after an 18-h incubation. RESULTS: The 2-dimensional organoids contained crypt cells and differentiated villus cells, including enterocytes and goblet and enteroendocrine cells. These enteroendocrine cells stained positive for GLP-1, PYY, and serotonin. The cultured 2-dimensional organoids maintained their location-specific gene expression patterns. Compared with the control, rebaudioside A induced GLP-1 secretion 1.7-fold in the duodenum (P < 0.01), 2.2-fold in the jejunum (P < 0.01), and 4.3-fold in the ileum (P < 0.001). PYY release was increased by rebaudioside A 3-fold in the ileum compared with the control (P < 0.05). Long-term (18-h) stimulation with the sweetener induced the expression of the enteroendocrine-specific markers chromogranin A, glucagon, Pyy, and cholecystokinin 3.5- (P < 0.001), 3.5- (P < 0.001), 3.8- (P < 0.05), and 6.5-fold (P < 0.001), respectively. CONCLUSIONS: These results show novel ex vivo effects of rebaudioside A on enteroendocrine cells of the mouse small intestine and highlight potentially new applications for rebaudioside A in metabolic diseases

    The noncaloric sweetener rebaudioside a stimulates glucagon-like peptide 1 release and increases enteroendocrine cell numbers in 2-dimensional mouse organoids derived from different locations of the intestine

    No full text
    Background: Glucagon-like peptide 1 (GLP-1) contributes to satiety and plays a pivotal role in insulin secretion and glucose homeostasis. Similar to GLP-1, peptide YY (PYY) and cholecystokinin also influence food intake. The secretion of these hormones by enteroendocrine cells along the intestine is modulated by nutrients. Preparations from the Stevia rebaudiana plant, including rebaudioside A, are increasingly being used as noncaloric sweeteners. Objective: We investigated the effects of rebaudioside A on enteroendocrine cells by assessing both cell numbers as well as their secretory capacity in an organoid model. Methods: A 2-dimensional organoid model derived from duodenal, jejunal, and ileal crypts of a C57BL/6J mouse was developed and characterized with the use of gene expression and immunofluorescence. We stimulated these organoids with 10 mmol/L rebaudioside A for 1 h and measured their GLP-1, PYY, and cholecystokinin release. We also analyzed the effects of rebaudioside A on gene expression in enteroendocrine cells after an 18-h incubation. Results: The 2-dimensional organoids contained crypt cells and differentiated villus cells, including enterocytes and goblet and enteroendocrine cells. These enteroendocrine cells stained positive for GLP-1, PYY, and serotonin. The cultured 2-dimensional organoids maintained their location-specific gene expression patterns. Compared with the control, rebaudioside A induced GLP-1 secretion 1.7-fold in the duodenum (P <0.01), 2.2-fold in the jejunum (P <0.01), and 4.3-fold in the ileum (P <0.001). PYY release was increased by rebaudioside A 3-fold in the ileumcompared with the control (P <0.05). Long-term (18-h) stimulation with the sweetener induced the expression of the enteroendocrine-specific markers chromogranin A, glucagon, Pyy, and cholecystokinin 3.5- (P <0.001), 3.5- (P <0.001), 3.8- (P <0.05), and 6.5-fold (P <0.001), respectively. Conclusions: These results show novel ex vivo effects of rebaudioside A on enteroendocrine cells of the mouse small intestine and highlight potentially new applications for rebaudioside A in metabolic diseases.</p

    The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women

    No full text
    Abstract Appetite suppressants may be one strategy in the fight against obesity. This study evaluated whether Korean pine nut free fatty acids (FFA) and triglycerides (TG) work as an appetite suppressant. Korean pine nut FFA were evaluated in STC-1 cell culture for their ability to increase cholecystokinin (CCK-8) secretion vs. several other dietary fatty acids from Italian stone pine nut fatty acids, oleic acid, linoleic acid, alpha-linolenic acid, and capric acid used as a control. At 50 μM concentration, Korean pine nut FFA produced the greatest amount of CCK-8 release (493 pg/ml) relative to the other fatty acids and control (46 pg/ml). A randomized, placebo-controlled, double-blind cross-over trial including 18 overweight post-menopausal women was performed. Subjects received capsules with 3 g Korean pine (Pinus koraiensis) nut FFA, 3 g pine nut TG or 3 g placebo (olive oil) in combination with a light breakfast. At 0, 30, 60, 90, 120, 180 and 240 minutes the gut hormones cholecystokinin (CCK-8), glucagon like peptide-1 (GLP-1), peptide YY (PYY) and ghrelin, and appetite sensations were measured. A wash-out period of one week separated each intervention day. CCK-8 was higher 30 min after pine nut FFA and 60 min after pine nut TG when compared to placebo (p This study suggests that Korean pine nut may work as an appetite suppressant through an increasing effect on satiety hormones and a reduced prospective food intake.</p
    corecore