23 research outputs found
Potato protein ingestion increases muscle protein synthesis rates at rest and during recovery from exercise in humans
Introduction
Plant-derived proteins have received considerable attention as an alternative to animal-based proteins and are now frequently used in both plant-based diets and sports nutrition products. However, little information is available on the anabolic properties of potato-derived protein. This study compares muscle protein synthesis rates after the ingestion of 30 g potato protein versus 30 g milk protein at rest and during recovery from a single bout of resistance exercise in healthy, young males.
Methods
In a randomized, double-blind, parallel-group design, 24 healthy young males (24 ± 4 yr) received primed continuous l-[ring-13C6]-phenylalanine infusions while ingesting 30 g potato-derived protein or 30 g milk protein after a single bout of unilateral resistance exercise. Blood and muscle biopsies were collected for 5 h after protein ingestion to assess postprandial plasma amino acid profiles and mixed muscle protein synthesis rates at rest and during recovery from exercise.
Results
Ingestion of both potato and milk protein increased mixed muscle protein synthesis rates when compared with basal postabsorptive values (from 0.020% ± 0.011% to 0.053% ± 0.017%·h−1 and from 0.021% ± 0.014% to 0.050% ± 0.012%·h−1, respectively; P < 0.001), with no differences between treatments (P = 0.54). In the exercised leg, mixed muscle protein synthesis rates increased to 0.069% ± 0.019% and 0.064% ± 0.015%·h−1 after ingesting potato and milk protein, respectively (P < 0.001), with no differences between treatments (P = 0.52). The muscle protein synthetic response was greater in the exercised compared with the resting leg (P < 0.05).
Conclusions
Ingestion of 30 g potato protein concentrate increases muscle protein synthesis rates at rest and during recovery from exercise in healthy, young males. Muscle protein synthesis rates after the ingestion of 30 g potato protein do not differ from rates observed after ingesting an equivalent amount of milk protein
Potato Protein Ingestion Increases Muscle Protein Synthesis Rates at Rest and during Recovery from Exercise in Humans
INTRODUCTION: Plant-derived proteins have received considerable attention as an alternative to animal-based proteins and are now frequently used in both plant-based diets and sports nutrition products. However, little information is available on the anabolic properties of potato-derived protein. This study compares muscle protein synthesis rates after the ingestion of 30 g potato protein versus 30 g milk protein at rest and during recovery from a single bout of resistance exercise in healthy, young males. METHODS: In a randomized, double-blind, parallel-group design, 24 healthy young males (24 ± 4 yr) received primed continuous l-[ring-(13)C(6)]-phenylalanine infusions while ingesting 30 g potato-derived protein or 30 g milk protein after a single bout of unilateral resistance exercise. Blood and muscle biopsies were collected for 5 h after protein ingestion to assess postprandial plasma amino acid profiles and mixed muscle protein synthesis rates at rest and during recovery from exercise. RESULTS: Ingestion of both potato and milk protein increased mixed muscle protein synthesis rates when compared with basal postabsorptive values (from 0.020% ± 0.011% to 0.053% ± 0.017%·h(−1) and from 0.021% ± 0.014% to 0.050% ± 0.012%·h(−1), respectively; P < 0.001), with no differences between treatments (P = 0.54). In the exercised leg, mixed muscle protein synthesis rates increased to 0.069% ± 0.019% and 0.064% ± 0.015%·h(−1) after ingesting potato and milk protein, respectively (P < 0.001), with no differences between treatments (P = 0.52). The muscle protein synthetic response was greater in the exercised compared with the resting leg (P < 0.05). CONCLUSIONS: Ingestion of 30 g potato protein concentrate increases muscle protein synthesis rates at rest and during recovery from exercise in healthy, young males. Muscle protein synthesis rates after the ingestion of 30 g potato protein do not differ from rates observed after ingesting an equivalent amount of milk protein
Intradialytic protein ingestion and exercise do not compromise uremic toxin removal throughout hemodialysis
Objective
Dietary protein and physical activity interventions are increasingly implemented during hemodialysis to support muscle maintenance in patients with end-stage renal disease (ESRD). Although muscle maintenance is important, adequate removal of uremic toxins throughout hemodialysis is the primary concern for patients. It remains to be established whether intradialytic protein ingestion and/or exercise modulate uremic toxin removal during hemodialysis.
Methods
We recruited 10 patients with ESRD (age: 65 ± 16 y, BMI: 24.2 ± 4.8 kg/m2) on chronic hemodialysis treatment to participate in this randomized cross-over trial. During hemodialysis, patients were assigned to ingest 40 g protein or a nonprotein placebo both at rest (protein [PRO] and placebo [PLA], respectively) and following 30 min of exercise (PRO + exercise [EX] and PLA + EX, respectively). Blood and spent dialysate samples were collected throughout hemodialysis to assess reduction ratios and removal of urea, creatinine, phosphate, cystatin C, and indoxyl sulfate.
Results
The reduction ratios of urea and indoxyl sulfate were higher during PLA (76 ± 6% and 46 ± 9%, respectively) and PLA + EX interventions (77 ± 5% and 45 ± 10%, respectively) when compared to PRO (72 ± 4% and 40 ± 8%, respectively) and PRO + EX interventions (73 ± 4% and 43 ± 7%, respectively; protein effect: P = .001 and P = .023, respectively; exercise effect: P = .25 and P = .52, respectively). Nonetheless, protein ingestion resulted in greater urea removal (P = .046) during hemodialysis. Reduction ratios and removal of creatinine, phosphate, and cystatin C during hemodialysis did not differ following intradialytic protein ingestion or exercise (protein effect: P > .05; exercise effect: P>.05). Urea, creatinine, and phosphate removal were greater throughout the period with intradialytic exercise during PLA + EX and PRO + EX interventions when compared to the same period during PLA and PRO interventions (exercise effect: P = .034, P = .039, and P = .022, respectively).
Conclusion
The removal of uremic toxins is not compromised by protein feeding and/or exercise implementation during hemodialysis in patients with ESRD
Dietary Protein and Physical Activity Interventions to Support Muscle Maintenance in End-Stage Renal Disease Patients on Hemodialysis
End-stage renal disease patients have insufficient renal clearance capacity left to adequately excrete metabolic waste products. Hemodialysis (HD) is often employed to partially replace renal clearance in these patients. However, skeletal muscle mass and strength start to decline at an accelerated rate after initiation of chronic HD therapy. An essential anabolic stimulus to allow muscle maintenance is dietary protein ingestion. Chronic HD patients generally fail to achieve recommended protein intake levels, in particular on dialysis days. Besides a low protein intake on dialysis days, the protein equivalent of a meal is extracted from the circulation during HD. Apart from protein ingestion, physical activity is essential to allow muscle maintenance. Unfortunately, most chronic HD patients have a sedentary lifestyle. Yet, physical activity and nutritional interventions to support muscle maintenance are generally not implemented in routine patient care. To support muscle maintenance in chronic HD patients, quantity and timing of protein intake should be optimized, in particular throughout dialysis days. Furthermore, implementing physical activity either during or between HD sessions may improve the muscle protein synthetic response to protein ingestion. A well-orchestrated combination of physical activity and nutritional interventions will be instrumental to preserve muscle mass in chronic HD patients
Dietary protein interventions to improve nutritional status in end-stage renal disease patients undergoing hemodialysis
Purpose of review
Poor nutritional status is prevalent among end-stage renal disease patients undergoing hemodialysis. Chronic hemodialysis patients show an accelerated decline in skeletal muscle mass and strength, which is associated with higher mortality rates and a reduced quality of life. The current review aims to summarize recent advances regarding underlying causes of muscle loss and interventions that support muscle mass maintenance in patients with chronic hemodialysis.
Recent findings
Muscle maintenance in chronic hemodialysis patients is compromised by low dietary protein intake levels, anabolic resistance of skeletal muscle tissue, sedentary behavior, and amino acid removal during hemodialysis. Studies assessing the effect of increased protein intake on nutritional status generally show beneficial results, especially in hypoalbuminemic chronic hemodialysis patients. The muscle protein synthetic response following protein ingestion in chronic hemodialysis patients may be enhanced through incorporation of structured physical activity and/or concurrent ketoacid ingestion.
Summary
A coordinated program that combines nutritional and physical activity interventions is likely required to attenuate the decline in muscle mass and strength of chronic hemodialysis patients. Nephrologists, dieticians, and exercise specialists should collaborate closely to establish guidelines regarding the appropriate quantity and timing of protein ingestion. In addition, they should provide tailored nutritional and physical activity interventions for chronic hemodialysis patients (see video, Supplemental Digital Content 1, Video abstract, https://links.lww.com/COCN/A14)
Dietary Protein and Physical Activity Interventions to Support Muscle Maintenance in End-Stage Renal Disease Patients on Hemodialysis
End-stage renal disease patients have insufficient renal clearance capacity left to adequately excrete metabolic waste products. Hemodialysis (HD) is often employed to partially replace renal clearance in these patients. However, skeletal muscle mass and strength start to decline at an accelerated rate after initiation of chronic HD therapy. An essential anabolic stimulus to allow muscle maintenance is dietary protein ingestion. Chronic HD patients generally fail to achieve recommended protein intake levels, in particular on dialysis days. Besides a low protein intake on dialysis days, the protein equivalent of a meal is extracted from the circulation during HD. Apart from protein ingestion, physical activity is essential to allow muscle maintenance. Unfortunately, most chronic HD patients have a sedentary lifestyle. Yet, physical activity and nutritional interventions to support muscle maintenance are generally not implemented in routine patient care. To support muscle maintenance in chronic HD patients, quantity and timing of protein intake should be optimized, in particular throughout dialysis days. Furthermore, implementing physical activity either during or between HD sessions may improve the muscle protein synthetic response to protein ingestion. A well-orchestrated combination of physical activity and nutritional interventions will be instrumental to preserve muscle mass in chronic HD patients
Exercising to offset muscle mass loss in hemodialysis patients: The disconnect between intention and intervention
Skeletal muscle loss is the most important hallmark of protein energy wasting syndrome as it contributes to declines in physical independence, poor quality of life, and higher mortality risk in individuals with ESRD on maintenance hemodialysis (HD). As such, exercise and nutritional interventions have been investigated with the goal to preserve skeletal muscle mass and overall quality of life. Unfortunately, current efforts are unable to confirm the capacity of exercise to mitigate ESRD‐associated muscle wasting. However, the inconclusive data are often accompanied by suboptimal exercise prescriptions. Exercise sessions are often implemented in‐clinic during the catabolic and proinflammatory period of dialysis treatment and without concurrent nutritional support. Additionally, indirect considerations like exercise intolerance and exercise program compliance/adherence also inhibit exercise training potential. These shortcomings all stem from the current lack of understanding in skeletal muscle mass regulation within the context of ESRD and intermittent HD. As such, this review summarizes the current understanding of exercise regulation on skeletal muscle mass and ESRD‐related obstacles of anabolism to contextualize the ineffectiveness of current exercise interventions for HD patients
Acute Quark Ingestion Increases Muscle Protein Synthesis Rates at Rest with a Further Increase after Exercise in Young and Older Adult Males in a Parallel-Group Intervention Trial
Background: Ingestion of protein concentrates or isolates increases muscle protein synthesis rates in young and older adults. There is far less information available on the anabolic response following the ingestion of dairy wholefoods, which are commonly consumed in a normal diet. Objectives: This study investigates whether ingestion of 30 g protein provided as quark increases muscle protein synthesis rates at rest and whether muscle protein synthesis rates are further increased after resistance exercise in young and older adult males. Methods: In this parallel-group intervention trial, 14 young (18–35 y) and 15 older (65–85 y) adult males ingested 30 g protein provided as quark after a single-legged bout of resistance exercise on leg press and leg extension machines. Primed, continuous intravenous L-[ring- 13C 6]-phenylalanine infusions were combined with the collection of blood and muscle tissue samples to assess postabsorptive and 4-h postprandial muscle protein synthesis rates at rest and during recovery from exercise. Data represent means ± SDs; η 2 was used to measure the effect size. Results: Plasma total amino acid and leucine concentrations increased after quark ingestion in both groups (both time: P < 0.001; η 2 > 0.8), with no differences between groups (time × group: P = 0.127 and P = 0.172, respectively; η 2<0.1). Muscle protein synthesis rates increased following quark ingestion at rest in both young (from 0.030 ± 0.011 to 0.051 ± 0.011 %·h −1) and older adult males (from 0.036 ± 0.011 to 0.062 ± 0.013 %·h −1), with a further increase in the exercised leg (to 0.071 ± 0.023 %·h −1 and to 0.078 ± 0.019 %·h −1, respectively; condition: P < 0.001; η 2 = 0.716), with no differences between groups (condition × group: P = 0.747; η 2 = 0.011). Conclusions: Quark ingestion increases muscle protein synthesis rates at rest with a further increase following exercise in both young and older adult males. The postprandial muscle protein synthetic response following quark ingestion does not differ between healthy young and older adult males when an ample amount of protein is ingested. This trial was registered at the Dutch Trial register, which is accessible via trialsearch.who.int www.trialregister.nl as NL8403.</p
No differences in muscle protein synthesis rates following ingestion of wheat protein, milk protein, and their protein blend in healthy, young males
Plant-derived proteins have been suggested to have less anabolic properties when compared with animal-derived proteins. Whether blends of plant-and animal-derived proteins can compensate for their lesser anabolic potential has not been assessed. This study compares post-prandial muscle protein synthesis rates following the ingestion of milk protein with wheat protein or a blend of wheat plus milk protein in healthy, young males. In a randomized, double blind, parallel-group design, 36 males (23±3 y) received a primed continuous L-[ring-13C6]-phenylalanine infusion after which they ingested 30 g milk protein (MILK), 30 g wheat protein (WHEAT), or a 30 g blend combining 15 g wheat plus 15 g milk protein (WHEAT+MILK). Blood and muscle biopsies were collected frequently for 5 hours to assess post-prandial plasma amino acid profiles and subsequent myofibrillar protein synthesis rates. Ingestion of protein increased myofibrillar protein synthesis rates in all treatments (P<0.001). Post-prandial myofibrillar protein synthesis rates did not differ between MILK vs WHEAT (0.053±0.013 vs 0.056±0.012™h-1, respectively; t-test P=0.56) or between MILK vs WHEAT+MILK (0.053±0.013 vs 0.059±0.025™h-1, respectively; t-test P=0.46). In conclusion, ingestion of 30 g milk protein, 30 g wheat protein, or a blend of 15 g wheat plus 15 g milk protein increases muscle protein synthesis rates in young males. Furthermore, muscle protein synthesis rates following the ingestion of 30 g milk protein do not differ from rates observed after ingesting 30 g wheat protein or a blend with 15 g milk plus 15 g wheat protein in healthy, young males.</p