24 research outputs found

    A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction

    No full text
    A current trend in the development of assistive devices for rehabilitation, for example exoskeletons or active orthoses, is to utilize physiological data to enhance their functionality and usability, for example by predicting the patient’s upcoming movements using electroencephalography (EEG) or electromyography (EMG). However, these modalities have different temporal properties and classification accuracies, which results in specific advantages and disadvantages. To use physiological data analysis in rehabilitation devices, the processing should be performed in real-time, guarantee close to natural movement onset support, provide high mobility, and should be performed by miniaturized systems that can be embedded into the rehabilitation device. We present a novel Field Programmable Gate Array (FPGA) -based system for real-time movement prediction using physiological data. Its parallel processing capabilities allows the combination of movement predictions based on EEG and EMG and additionally a P300 detection, which is likely evoked by instructions of the therapist. The system is evaluated in an offline and an online study with twelve healthy subjects in total. We show that it provides a high computational performance and significantly lower power consumption in comparison to a standard PC. Furthermore, despite the usage of fixed-point computations, the proposed system achieves a classification accuracy similar to systems with double precision floating-point precision

    Prediction of Electricity Generation Using Onshore Wind and Solar Energy in Germany

    No full text
    Renewable energy production is one of the most important strategies to reduce the emission of greenhouse gases. However, wind and solar energy especially depend on time-varying properties of the environment, such as weather. Hence, for the control and stabilization of electricity grids, the accurate forecasting of energy production from renewable energy sources is essential. This study provides an empirical comparison of the forecasting accuracy of electricity generation from renewable energy sources by different deep learning methods, including five different Transformer-based forecasting models based on weather data. The models are compared with the long short-term memory (LSTM) and Autoregressive Integrated Moving Average (ARIMA) models as a baseline. The accuracy of these models is evaluated across diverse forecast periods, and the impact of utilizing selected weather data versus all available data on predictive performance is investigated. Distinct performance patterns emerge among the Transformer-based models, with Autoformer and FEDformer exhibiting suboptimal results for this task, especially when utilizing a comprehensive set of weather parameters. In contrast, the Informer model demonstrates superior predictive capabilities for onshore wind power and photovoltaic (PV) power production. The Informer model consistently performs well in predicting both onshore wind and PV energy. Notably, the LSTM model outperforms all other models across various categories. This research emphasizes the significance of selectively using weather parameters for improved performance compared to employing all parameters and a time reference. We show that the suitability and performance of a prediction model can vary significantly, depending on the specific forecasting task and the data that are provided to the model

    Modular Design and Decentralized Control of the <span style="font-variant: small-caps">Recupera</span> Exoskeleton for Stroke Rehabilitation

    No full text
    Robot-assisted therapy has become increasingly popular and useful in post-stroke neurorehabilitation. This paper presents an overview of the design and control of the dual-arm Recupera exoskeleton to provide intense therapist-guided as well as self training for sensorimotor rehabilitation of the upper body. The exoskeleton features a lightweight design, high level of modularity, decentralized computing, and various levels of safety implementation. Due to its modularity, the system can be used as a wheel-chair mounted system or as a full-body system. Both systems enable a wide range of therapies while efficiently grounding the weight of the system and without compromising the patient&#8217;s mobility. Furthermore, two rehabilitation therapies implemented on the exoskeleton system, namely teach &amp; replay therapy and mirror therapy, are presented along with experimental results

    On the applicability of brain reading for predictive human-machine interfaces in robotics.

    Get PDF
    The ability of today's robots to autonomously support humans in their daily activities is still limited. To improve this, predictive human-machine interfaces (HMIs) can be applied to better support future interaction between human and machine. To infer upcoming context-based behavior relevant brain states of the human have to be detected. This is achieved by brain reading (BR), a passive approach for single trial EEG analysis that makes use of supervised machine learning (ML) methods. In this work we propose that BR is able to detect concrete states of the interacting human. To support this, we show that BR detects patterns in the electroencephalogram (EEG) that can be related to event-related activity in the EEG like the P300, which are indicators of concrete states or brain processes like target recognition processes. Further, we improve the robustness and applicability of BR in application-oriented scenarios by identifying and combining most relevant training data for single trial classification and by applying classifier transfer. We show that training and testing, i.e., application of the classifier, can be carried out on different classes, if the samples of both classes miss a relevant pattern. Classifier transfer is important for the usage of BR in application scenarios, where only small amounts of training examples are available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar behavior as performed during the teleoperation of a robotic arm. Here, target recognition processes and movement preparation processes are detected simultaneously. In summary, our findings contribute to the development of robust and stable predictive HMIs that enable the simultaneous support of different interaction behaviors

    Method illustration and performance for different training windows.

    No full text
    <p>The diagram illustrates the combination of training time of two windows using the previously found clusters (see methods description for details), classification performance and statistics. Classification performance of a -fold cross validation for four subjects quantified with mean BA and standard error is presented by the dots in the diagram. The x-axis shows different training settings: A, B, C – one training window per movement marker ending at different times with respect to the movement marker; A+A, B+B, C+C, A+B, B+C, C+A – two training windows per movement marker, combined within the same cluster or with other clusters. All – all training windows were used to train a classifier.</p

    Experimental setup for the teleoperation scenario – a holistic feedback control of semi-autonomous robots.

    No full text
    <p>In the teleoperation scenario an operator is wearing an exoskeleton and, with the support of a virtual scenario, is tele-manipulating a robotic arm. A: three kinds of virtual response cubes (different responses are required for different types of warnings); B: different kinds of stimuli: unimportant stimulus (STATE OK – no response required), warning (first target – response required), repeated and enhanced warning (second target – response required), third warning (response is critical, e.g., exoskeleton control is disabled); C: labyrinth that the robot has to be moved through; D: virtual hand.</p
    corecore