57 research outputs found

    Der Einfluss von plasmazytoiden dendritischen Zellen und immunstimulatorischer DNA auf B-Zellen des humanen Immunsystems

    Get PDF
    It has been reported that interferon (IFN-) enhances humoral immunity and that dendritic cells of the myeloid lineage promote B-cell differentiation. Here we studied whether the plasmacytoid dendritic cell (PDC), a subset of dendritic cells specialized for the production of IFN-, is involved in regulating B-cell differentiation and immunoglobulin production. The recently identified class of CpG oligonucleotides (CpG-C) was used to activate both B cells and PDCs via Toll-like receptor 9 (TLR9). The presence of PDCs synergistically enhanced CD86 expression, cytokine production (interleukin 6 [IL-6], tumor necrosis factor , and IL-10) and plasma cell differentiation of isolated human peripheral blood B cells stimulated through CpG-C and B-cell antigen receptor (BCR) ligation. This stimulation protocol was sufficient to drive purified naive B cells into IgM-producing plasma cells and to trigger IgG synthesis in memory B cells. PDCs contributed to B-cell activation via IFN- secretion. Up-regulation of TLR9 on B cells was not involved. These results demonstrate that CpG-stimulated PDCs induce plasma cell differentiation in naive and memory B cells in the absence of T-cell help, providing an explanation for the excellent activity of CpG oligonucleotides as a humoral vaccine adjuvant. (Blood. 2004;103:3058-3064

    Novel T cell/organoid culture system allows ex vivo modeling of intestinal graft-versus-host disease

    Get PDF
    Acute graft-versus-host disease (GvHD) remains the biggest clinical challenge and prognosis-determining complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Donor T cells are acceptedly key mediators of alloreactivity against host tissues and here especially the gut. In support of previous studies, we found that the intestinal intra-epithelial lymphocyte (IEL) compartment was dynamically regulated in the course of MHC class I full mismatch allo-HSCT. However, while intestinal epithelial cell (IEC) damage endangers the integrity of the intestinal barrier and is a core signature of intestinal GvHD, the question whether and to what degree IELs are contributing to IEC dysregulation is poorly understood. To study lymphoepithelial interaction, we employed a novel ex vivo T cell/organoid co-culture model system. Here, allogeneic intra-epithelial T cells were superior in inducing IEC death compared to syngeneic IEL and allogeneic non-IEL T cells. The ability to induce IEC death was predominately confined to TCRβ+ T cells and was executed in a largely IFNγ-dependent manner. Alloreactivity required a diverse T cell receptor (TCR) repertoire since IELs genetically modified to express a TCR restricted to a single, non-endogenous antigen failed to mediate IEC pathology. Interestingly, minor histocompatibility antigen (miHA) mismatch was sufficient to elicit IEL-driven IEC damage. Finally, advanced live cell imaging analyses uncovered that alloreactive IELs patrolled smaller areas within intestinal organoids compared to syngeneic controls, indicating their unique migratory properties within allogeneic IECs. Together, we provide here experimental evidence for the utility of a co-culture system to model the cellular and molecular characteristics of the crosstalk between IELs and IEC in an allogeneic setting ex vivo. In the light of the emerging concept of dysregulated immune-epithelial homeostasis as a core aspect of intestinal GvHD, this approach represents a novel experimental system to e.g. screen therapeutic strategies for their potential to normalize T cell/IEC- interaction. Hence, analyses in pre-clinical in vivo allo-HSCT model systems may be restricted to hereby positively selected, promising approaches

    Ruxolitinib for the treatment of acute graft-versus-host disease: a retrospective analysis

    Get PDF
    Steroid-refractory acute graft-versus-host disease (aGvHD) is a serious complication after allogeneic hematopoietic stem cell transplantation, associated with significant mortality. Ruxolitinib was the first drug approved for aGvHD, based on results of the REACH2 trial; however, real-world data are limited. We retrospectively analyzed the safety and efficacy of ruxolitinib for treatment of aGvHD at our center from March 2016 to August 2022 and assessed biomarkers of risk. We identified 49 patients receiving ruxolitinib as second- (33/49), third- (11/49), fourth- (3/49), or fifth-line (2/49) treatment. Ruxolitinib was started on median day 11 (range, 7–21) after aGvHD onset; median duration of administration was 37 days (range, 20–86), with 10 patients continuing treatment at last follow-up. Median follow-up period was 501 days (range, 95–905). In the primary analysis at the 1-month assessment, overall response rate was 65%, and failure-free survival was 78%. Infectious complications ≥ CTCAE Grade III were observed in 10/49 patients within 1-month followup. Patients responding to ruxolitinib therapy required fewer steroids and exhibited lower levels of the serum biomarkers regenerating islet-derived protein 3-alpha, suppression of tumorigenicity 2, and the Mount Sinai Acute GVHD International Consortium algorithm probability. A univariate regression model revealed steroid-dependent aGvHD as a significant predictor of better response to ruxolitinib. Within 6-months follow-up, four patients experienced recurrence of underlying malignancy, and eight died due to treatment-related mortality. Overall, ruxolitinib was welltolerated and showed response in heavily pretreated patients, with results comparable to those of the REACH2 trial. Biomarkers may be useful predictors of response to ruxolitinib

    Selection of molecular structure and delivery of RNA oligonucleotides to activate TLR7 versus TLR8 and to induce high amounts of IL-12p70 in primary human monocytes

    Get PDF
    Detection of non-self RNA by TLRs within endosomes and by retinoic acid-inducible gene I (RIG-I)-like helicases in the cytosol is central to mammalian antiviral immunity. In this study, we used pathway-specific agonists and targeted delivery to address RNA immunorecognition in primary human immune cells. Within PBMC, plasmacytoid dendritic cells (pDC) and monocytes were found to be responsible for IFN-alpha production upon immunorecognition of RNA. The mechanisms of RNA recognition in pDC and monocytes were distinct. In pDC, recognition of ssRNA and dsRNA oligonucleotides was TLR7-dependent, whereas a 5' triphosphate moiety (RIG-I ligand activity) had no major contribution to IFN-alpha production. In monocytes, the response to RNA oligonucleotides was mediated by either TLR8 or RIG-I. TLR8 was responsible for IL-12 induction upon endosomal delivery of ssRNA oligonucleotides and RIG-I was responsible for IFN-alpha production upon delivery of 5' triphosphate RNA into the cytosol. In conclusion, the dissection of these pathways by selecting the appropriate structure and delivery of RNA reveals pDC as major producer of IFN-alpha upon TLR-mediated stimulation and monocytes as major producer of IFN-alpha upon RIG-I-mediated stimulation. Furthermore, our results uncover the potential of monocytes to function as major producers of IL-12p70, a key Th1 cytokine classically ascribed to myeloid dendritic cells that cannot be induced by CpG oligonucleotides in the human system

    The microbial metabolite desaminotyrosine enhances T-cell priming and cancer immunotherapy with immune checkpoint inhibitors

    Get PDF
    Background Inter-individual differences in response to immune checkpoint inhibitors (ICI) remain a major challenge in cancer treatment. The composition of the gut microbiome has been associated with differential ICI outcome, but the underlying molecular mechanisms remain unclear, and therapeutic modulation challenging. Methods We established an in vivo model to treat C57Bl/6j mice with the type-I interferon (IFN-I)-modulating, bacterial-derived metabolite desaminotyrosine (DAT) to improve ICI therapy. Broad spectrum antibiotics were used to mimic gut microbial dysbiosis and associated ICI resistance. We utilized genetic mouse models to address the role of host IFN-I in DAT-modulated antitumour immunity. Changes in gut microbiota were assessed using 16S-rRNA sequencing analyses. Findings We found that oral supplementation of mice with the microbial metabolite DAT delays tumour growth and promotes ICI immunotherapy with anti-CTLA-4 or anti-PD-1. DAT-enhanced antitumour immunity was associated with more activated T cells and natural killer cells in the tumour microenvironment and was dependent on host IFN-I signalling. Consistent with this, DAT potently enhanced expansion of antigen-specific T cells following vaccination with an IFN-I-inducing adjuvant. DAT supplementation in mice compensated for the negative effects of broad-spectrum antibiotic-induced dysbiosis on anti-CTLA-4-mediated antitumour immunity. Oral administration of DAT altered the gut microbial composition in mice with increased abundance of bacterial taxa that are associated with beneficial response to ICI immunotherapy. Interpretation We introduce the therapeutic use of an IFN-I-modulating bacterial-derived metabolite to overcome resistance to ICI. This approach is a promising strategy particularly for patients with a history of broad-spectrum antibiotic use and associated loss of gut microbial diversity

    Tocilizumab administration in cytokine release syndrome is associated with hypofibrinogenemia after chimeric antigen receptor T-cell therapy for hematologic malignancies

    Get PDF
    Chimeric antigen receptor (CAR-) T cell therapy causes serious side effects including cytokine release syndrome (CRS). CRS-related coagulopathy is associated with hypofibrinogenemia that is thus far considered the result of disseminated intravascular coagulation (DIC) and liver dysfunction. We investigated incidence and risk factors for hypofibrinogenemia in 41 consecutive adult patients with hematologic malignancies (median age 69 years, range 38-83 years) receiving CAR-T cell therapy between 01/2020 and 05/2023 at the University Medical Center Regensburg. CRS occurred in 93% of patients and was accompanied by hypofibrinogenemia already from CRS grade 1. Yet, DIC and liver dysfunction mainly occurred in severe CRS (≥ grade 3). After an initial increase during CRS, fibrinogen levels dropped after administration of tocilizumab in a dose dependent manner (r = -0.44, p = 0.004). In contrast, patients who did not receive tocilizumab had increased fibrinogen levels. Logistic regression analysis identified tocilizumab as an independent risk factor for hypofibrinogenemia (odds ratio = 486, p < 0.001). We thus hypothesize that fibrinogen synthesis in CRS is upregulated in an interleukin-6-dependent acute phase reaction compensating for CRS-induced consumption of coagulation factors. Tocilizumab inhibits fibrinogen upregulation resulting in prolonged hypofibrinogenemia. These observations provide novel insights into the pathophysiology of hypofibrinogenemia following CAR-T cell therapy and emphasize the need for close fibrinogen monitoring after tocilizumab treatment of CRS

    Intestinal IgA-positive plasma cells are highly sensitive indicators of alloreaction early after allogeneic transplantation and associate with both graft-versus-host disease and relapse-related mortality

    Get PDF
    Intestinal immunoglobulin A (IgA) is strongly involved in microbiota homeostasis. Since microbiota disruption is a major risk factor of acute graft-versus-host disease (GvHD), we addressed the kinetics of intestinal IgA-positive (IgA+) plasma cells by immunohistology in a series of 430 intestinal biopsies obtained at a median of 1,5 months after allogeneic stem cell transplantation (allo-SCT) from 115 patients (pts) at our center. IgA+ plasma cells were located in the subepithelial lamina propria and suppressed in the presence of histological aGvHD (GvHD Lerner stage 0: 131+/-8 IgA+ plasma cells/mm2; stage 1-2: 108+/-8 IgA+ plasma cells/mm2; stage 3-4: 89+/-16 IgA+ plasma cells/mm2; P=0.004). Overall, pts with IgA+ plasma cells below median had an increased treatment related mortality (P=0.04). Time courses suggested a gradual recovery of IgA+ plasma cells after day 100 in the absence but not in the presence of GvHD. Vice versa IgA+ plasma cells above median early after allo-SCT were predictive of relapse and relapse-related mortality (RRM): pts with low IgA+ cells had a 15% RRM at 2 and at 5 years, while pts with high IgA+ cells had a 31% RRM at 2 years and more than 46% at 5 years; multivariate analysis indicated high IgA+ plasma cells in biopsies (hazard ratio =2.7; 95% confidence interval: 1.04-7.00) as independent predictors of RRM, whereas Lerner stage and disease stage themselves did not affect RRM. In contrast, IgA serum levels at the time of biopsy were not predictive for RRM. In summary, our data indicate that IgA+ cells are highly sensitive indicators of alloreaction early after allo-SCT showing association with TRM but also allowing prediction of relapse independently from the presence of overt GvHD

    GPR Expression in Intestinal Biopsies From SCT Patients Is Upregulated in GvHD and Is Suppressed by Broad-Spectrum Antibiotics

    Get PDF
    Microbiota can exert immunomodulatory effects by short-chain fatty acids (SCFA) in experimental models of graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (allo-SCT). Therefore we aimed to analyze the expression of SCFAs sensing G-protein coupled receptor GPR109A and GPR43 by quantitative PCR in 338 gastrointestinal (GI) biopsies obtained from 199 adult patients undergoing allo-SCT and assessed the interaction of GPR with FOXP3 expression and regulatory T cell infiltrates. GPR expression was strongly upregulated in patients with stage II-IV GvHD (p=0.000 for GPR109A, p=0.01 for GPR43) and at the onset of GvHD (p 0.000 for GPR109A, p=0.006 for GPR43) and correlated strongly with FOXP3 and NLRP3 expression. The use of broad-spectrum antibiotics (Abx) drastically suppressed GPR expression as well as FOXP3 expression in patients’ gut biopsies (p=0.000 for GPRs, FOXP3 mRNA and FOXP3+ cellular infiltrates). Logistic regression analysis revealed treatment with Abx as an independent factor associated with GPR and FOXP3 loss. The upregulation of GPRs was evident only in the absence of Abx (p=0.001 for GPR109A, p=0.014 for GPR43) at GvHD onset. Thus, GPR expression seems to be upregulated in the presence of commensal bacteria and associates with infiltration of FOXP3+ T regs, suggesting a protective, regenerative immunomodulatory response. However, Abx, which has been shown to induce dysbiosis, interferes with this protective response

    Coronavirus disease 2019 induces multi‐lineage, morphologic changes in peripheral blood cells

    Get PDF
    The clinical course of coronavirus disease 2019 (COVID‐19) varies from mild symptoms to acute respiratory distress syndrome, hyperinflammation, and coagulation disorder. The hematopoietic system plays a critical role in the observed hyperinflammation, particularly in severely ill patients. We conducted a prospective diagnostic study performing a blood differential analyzing morphologic changes in peripheral blood of COVID‐19 patients. COVID‐19 associated morphologic changes were defined in a training cohort and subsequently validated in a second cohort (n = 45). Morphologic aberrations were further analyzed by electron microscopy (EM) and flow cytometry of lymphocytes was performed. We included 45 COVID‐19 patients in our study (median age 58 years; 82% on intensive care unit). The blood differential showed a specific pattern of pronounced multi‐lineage aberrations in lymphocytes (80%) and monocytes (91%) of patients. Overall, 84%, 98%, and 98% exhibited aberrations in granulopoiesis, erythropoiesis, and thrombopoiesis, respectively. Electron microscopy revealed the ultrastructural equivalents of the observed changes and confirmed the multi‐lineage aberrations already seen by light microscopy. The morphologic pattern caused by COVID‐19 is characteristic and underlines the serious perturbation of the hematopoietic system. We defined a hematologic COVID‐19 pattern to facilitate further independent diagnostic analysis and to investigate the impact on the hematologic system during the clinical course of COVID‐19 patients

    The Nlrp3 inflammasome regulates acute graft-versus-host disease

    Get PDF
    The success of allogeneic hematopoietic cell transplantation is limited by acute graft-versus-host disease (GvHD), a severe complication accompanied by high mortality rates. Yet, the molecular mechanisms initiating this disease remain poorly defined. In this study, we show that, after conditioning therapy, intestinal commensal bacteria and the damage-associated molecular pattern uric acid contribute to Nlrp3 inflammasome-mediated IL-1β production and that gastrointestinal decontamination and uric acid depletion reduced GvHD severity. Early blockade of IL-1β or genetic deficiency of the IL-1 receptor in dendritic cells (DCs) and T cells improved survival. The Nlrp3 inflammasome components Nlrp3 and Asc, which are required for pro-IL-1β cleavage, were critical for the full manifestation of GvHD. In transplanted mice, IL-1β originated from multiple intestinal cell compartments and exerted its effects on DCs and T cells, the latter being preferentially skewed toward Th17. Compatible with these mouse data, increased levels of active caspase-1 and IL-1β were found in circulating leukocytes and intestinal GvHD lesions of patients. Thus, the identification of a crucial role for the Nlrp3 inflammasome sheds new light on the pathogenesis of GvHD and opens a potential new avenue for the targeted therapy of this severe complication
    corecore