841 research outputs found

    Impact of g-factors and valleys on spin qubits in a silicon double quantum dot

    Full text link
    We define single electron spin qubits in a silicon MOS double quantum dot system. By mapping the qubit resonance frequency as a function of gate-induced electric field, the spectrum reveals an anticrossing that is consistent with an inter-valley spin-orbit coupling. We fit the data from which we extract an inter-valley coupling strength of 43 MHz. In addition, we observe a narrow resonance near the primary qubit resonance when we operate the device in the (1,1) charge configuration. The experimental data is consistent with a simulation involving two weakly exchanged-coupled spins with a g-factor difference of 1 MHz, of the same order as the Rabi frequency. We conclude that the narrow resonance is the result of driven transitions between the T- and T+ triplet states, using an ESR signal of frequency located halfway between the resonance frequencies of the two individual spins. The findings presented here offer an alternative method of implementing two-qubit gates, of relevance to the operation of larger scale spin qubit systems

    Opto-PCB: Three demonstrators for optical interconnections

    Get PDF
    We report on a research project targeting optical waveguide integrated PCBs conducted within the European FP6 Network of Excellence on Micro-Optics NEMO. For three identified feature requests we have built three specific demonstrators respectively addressing the integration of active components, the fabrication of peripheral fibre ribbons and the integration of multiple layers of waveguides on the board

    Local Leaders in Random Networks

    Get PDF
    We consider local leaders in random uncorrelated networks, i.e. nodes whose degree is higher or equal than the degree of all of their neighbors. An analytical expression is found for the probability of a node of degree kk to be a local leader. This quantity is shown to exhibit a transition from a situation where high degree nodes are local leaders to a situation where they are not when the tail of the degree distribution behaves like the power-law kγc\sim k^{-\gamma_c} with γc=3\gamma_c=3. Theoretical results are verified by computer simulations and the importance of finite-size effects is discussed.Comment: 4 pages, 2 figure

    Defective complex I assembly due to C20orf7 mutations as a new cause of Leigh syndrome

    Get PDF
    Background: Leigh syndrome is an early onset, progressive, neurodegenerative disorder with developmental and motor skills regression. Characteristic magnetic resonance imaging abnormalities consist of focal bilateral lesions in the basal ganglia and/or the brainstem. The main cause is a deficiency in oxidative phosphorylation due to mutations in an mtDNA or nuclear oxidative phosphorylation gene. Methods and results: A consanguineous Moroccan family with Leigh syndrome comprise 11 children, three of which are affected. Marker analysis revealed a homozygous region of 11.5 Mb on chromosome 20, containing 111 genes. Eight possible mitochondrial candidate genes were sequenced. Patients were homozygous for an unclassified variant (p.P193L) in the cardiolipin synthase gene (CRLS1). As this variant was present in 20% of a Moroccan control population and enzyme activity was only reduced to 50%, this could not explain the rare clinical phenotype in our family. Patients were also homozygous for an amino acid substitution (p.L159F) in C20orf7, a new complex I assembly factor. Parents were heterozygous and unaffected sibs heterozygous or homozygous wild type. The mutation affects the predicted S-adenosylmethionine (SAM) dependent methyltransferase domain of C20orf7, possibly involved in methylation of NDUFB3 during the assembly process. Blue native gel electrophoresis showed an altered complex I assembly with only 30-40% of mature complex I present in patients and 70-90% in carriers. Conclusions: A new cause of Leigh syndrome can be a defect in early complex I assembly due to C20orf7 mutations
    corecore