45 research outputs found

    Trains, Games, and Complexity: 0/1/2-Player Motion Planning through Input/Output Gadgets

    Full text link
    We analyze the computational complexity of motion planning through local "input/output" gadgets with separate entrances and exits, and a subset of allowed traversals from entrances to exits, each of which changes the state of the gadget and thereby the allowed traversals. We study such gadgets in the 0-, 1-, and 2-player settings, in particular extending past motion-planning-through-gadgets work to 0-player games for the first time, by considering "branchless" connections between gadgets that route every gadget's exit to a unique gadget's entrance. Our complexity results include containment in L, NL, P, NP, and PSPACE; as well as hardness for NL, P, NP, and PSPACE. We apply these results to show PSPACE-completeness for certain mechanics in Factorio, [the Sequence], and a restricted version of Trainyard, improving prior results. This work strengthens prior results on switching graphs and reachability switching games.Comment: 37 pages, 36 figure

    Flat Folding an Unassigned Single-Vertex Complex (Combinatorially Embedded Planar Graph with Specified Edge Lengths) without Flat Angles

    Get PDF
    A foundational result in origami mathematics is Kawasaki and Justin's simple, efficient characterization of flat foldability for unassigned single-vertex crease patterns (where each crease can fold mountain or valley) on flat material. This result was later generalized to cones of material, where the angles glued at the single vertex may not sum to 360360^\circ. Here we generalize these results to when the material forms a complex (instead of a manifold), and thus the angles are glued at the single vertex in the structure of an arbitrary planar graph (instead of a cycle). Like the earlier characterizations, we require all creases to fold mountain or valley, not remain unfolded flat; otherwise, the problem is known to be NP-complete (weakly for flat material and strongly for complexes). Equivalently, we efficiently characterize which combinatorially embedded planar graphs with prescribed edge lengths can fold flat, when all angles must be mountain or valley (not unfolded flat). Our algorithm runs in O(nlog3n)O(n \log^3 n) time, improving on the previous best algorithm of O(n2logn)O(n^2 \log n).Comment: 17 pages, 8 figures, to appear in Proceedings of the 38th International Symposium on Computational Geometr

    Lower Bounds on Retroactive Data Structures

    Get PDF
    We prove essentially optimal fine-grained lower bounds on the gap between a data structure and a partially retroactive version of the same data structure. Precisely, assuming any one of three standard conjectures, we describe a problem that has a data structure where operations run in O(T(n,m)) time per operation, but any partially retroactive version of that data structure requires T(n,m)?m^{1-o(1)} worst-case time per operation, where n is the size of the data structure at any time and m is the number of operations. Any data structure with operations running in O(T(n,m)) time per operation can be converted (via the "rollback method") into a partially retroactive data structure running in O(T(n,m)?m) time per operation, so our lower bound is tight up to an m^o(1) factor common in fine-grained complexity

    Complexity of Retrograde and Helpmate Chess Problems: Even Cooperative Chess Is Hard

    Get PDF

    Traversability, Reconfiguration, and Reachability in the Gadget Framework

    Full text link
    Consider an agent traversing a graph of "gadgets", each with local state that changes with each traversal by the agent. We characterize the complexity of universal traversal, where the goal is to traverse every gadget at least once, for DAG gadgets, one-state gadgets, and reversible deterministic gadgets. We also study the complexity of reconfiguration, where the goal is to bring the system of gadgets to a specified state, proving many cases PSPACE-complete, and showing in some cases that reconfiguration can be strictly harder than reachability (where the goal is for the agent to reach a specified location), while in other cases, reachability is strictly harder than reconfiguration.Comment: Full version of article appearing in WALCOM 2022. 23 pages, 14 figure

    PSPACE-Completeness of Reversible Deterministic Systems

    Full text link
    We prove PSPACE-completeness of several reversible, fully deterministic systems. At the core, we develop a framework for such proofs (building on a result of Tsukiji and Hagiwara and a framework for motion planning through gadgets), showing that any system that can implement three basic gadgets is PSPACE-complete. We then apply this framework to four different systems, showing its versatility. First, we prove that Deterministic Constraint Logic is PSPACE-complete, fixing an error in a previous argument from 2008. Second, we give a new PSPACE-hardness proof for the reversible `billiard ball' model of Fredkin and Toffoli from 40 years ago, newly establishing hardness when only two balls move at once. Third, we prove PSPACE-completeness of zero-player motion planning with any reversible deterministic interacting kk-tunnel gadget and a `rotate clockwise' gadget (a zero-player analog of branching hallways). Fourth, we give simpler proofs that zero-player motion planning is PSPACE-complete with just a single gadget, the 3-spinner. These results should in turn make it even easier to prove PSPACE-hardness of other reversible deterministic systems.Comment: 20 pages, 15 figure

    Walking Through Doors Is Hard, Even Without Staircases: Proving PSPACE-Hardness via Planar Assemblies of Door Gadgets

    Get PDF
    A door gadget has two states and three tunnels that can be traversed by an agent (player, robot, etc.): the "open" and "close" tunnel sets the gadget's state to open and closed, respectively, while the "traverse" tunnel can be traversed if and only if the door is in the open state. We prove that it is PSPACE-complete to decide whether an agent can move from one location to another through a planar assembly of such door gadgets, removing the traditional need for crossover gadgets and thereby simplifying past PSPACE-hardness proofs of Lemmings and Nintendo games Super Mario Bros., Legend of Zelda, and Donkey Kong Country. Our result holds in all but one of the possible local planar embedding of the open, close, and traverse tunnels within a door gadget; in the one remaining case, we prove NP-hardness. We also introduce and analyze a simpler type of door gadget, called the self-closing door. This gadget has two states and only two tunnels, similar to the "open" and "traverse" tunnels of doors, except that traversing the traverse tunnel also closes the door. In a variant called the symmetric self-closing door, the "open" tunnel can be traversed if and only if the door is closed. We prove that it is PSPACE-complete to decide whether an agent can move from one location to another through a planar assembly of either type of self-closing door. Then we apply this framework to prove new PSPACE-hardness results for eight different 3D Mario games and Sokobond.Comment: Accepted to FUN2020, 35 pages, 41 figure

    Complexity of Simple Folding of Mixed Orthogonal Crease Patterns

    Full text link
    Continuing results from JCDCGGG 2016 and 2017, we solve several new cases of the simple foldability problem -- deciding which crease patterns can be folded flat by a sequence of (some model of) simple folds. We give new efficient algorithms for mixed crease patterns, where some creases are assigned mountain/valley while others are unassigned, for all 1D cases and for 2D rectangular paper with orthogonal one-layer simple folds. By contrast, we show strong NP-completeness for mixed orthogonal crease patterns on 2D rectangular paper with some-layers simple folds, complementing a previous result for all-layers simple folds. We also prove strong NP-completeness for finite simple folds (no matter the number of layers) of unassigned orthogonal crease patterns on arbitrary paper, complementing a previous result for assigned crease patterns, and contrasting with a previous positive result for infinite all-layers simple folds. In total, we obtain a characterization of polynomial vs. NP-hard for all cases -- finite/infinite one/some/all-layers simple folds of assigned/unassigned/mixed orthogonal crease patterns on 1D/rectangular/arbitrary paper -- except the unsolved case of infinite all-layers simple folds of assigned orthogonal crease patterns on arbitrary paper.Comment: 20 pages, 13 figures. Presented at TJCDCGGG 2021. Accepted to Thai Journal of Mathematic

    Complexity of Motion Planning of Arbitrarily Many Robots: Gadgets, Petri Nets, and Counter Machines

    Full text link
    We extend the motion-planning-through-gadgets framework to several new scenarios involving various numbers of robots/agents, and analyze the complexity of the resulting motion-planning problems. While past work considers just one robot or one robot per player, most of our models allow for one or more locations to spawn new robots in each time step, leading to arbitrarily many robots. In the 0-player context, where all motion is deterministically forced, we prove that deciding whether any robot ever reaches a specified location is undecidable, by representing a counter machine. In the 1-player context, where the player can choose how to move the robots, we prove equivalence to Petri nets, EXPSPACE-completeness for reaching a specified location, PSPACE-completeness for reconfiguration, and ACKERMANN-completeness for reconfiguration when robots can be destroyed in addition to spawned. Finally, we consider a variation on the standard 2-player context where, instead of one robot per player, we have one robot shared by the players, along with a ko rule to prevent immediately undoing the previous move. We prove this impartial 2-player game EXPTIME-complete.Comment: 22 pages, 19 figures. Presented at SAND 202
    corecore