14 research outputs found

    ICOSL+ plasmacytoid dendritic cells as inducer of graft-versus-host disease, responsive to a dual ICOS/CD28 antagonist

    Get PDF
    Acute graft-versus-host disease (aGVHD) remains a major complication of allogeneic hematopoietic cell transplantation (HCT). CD146 and CCR5 are proteins that mark activated T helper 17 (Th17) cells. The Th17 cell phenotype is promoted by the interaction of the receptor ICOS on T cells with ICOS ligand (ICOSL) on dendritic cells (DCs). We performed multiparametric flow cytometry in a cohort of 156 HCT recipients and conducted experiments with aGVHD murine models to understand the role of ICOSL+ DCs. We observed an increased frequency of ICOSL+ plasmacytoid DCs, correlating with CD146+CCR5+ T cell frequencies, in the 64 HCT recipients with gastrointestinal aGVHD. In murine models, donor bone marrow cells from ICOSL-deficient mice compared to those from wild-type mice reduced aGVHD-related mortality. Reduced aGVHD resulted from lower intestinal infiltration of pDCs and pathogenic Th17 cells. We transplanted activated human ICOSL+ pDCs along with human peripheral blood mononuclear cells into immunocompromised mice and observed infiltration of intestinal CD146+CCR5+ T cells. We found that prophylactic administration of a dual human ICOS/CD28 antagonist (ALPN-101) prevented aGVHD in this model better than did the clinically approved belatacept (CTLA-4-Fc), which binds CD80 (B7-1) and CD86 (B7-2) and interferes with the CD28 T cell costimulatory pathway. When started at onset of aGVHD signs, ALPN-101 treatment alleviated symptoms of ongoing aGVHD and improved survival while preserving antitumoral cytotoxicity. Our data identified ICOSL+-pDCs as an aGVHD biomarker and suggest that coinhibition of the ICOSL/ICOS and B7/CD28 axes with one biologic drug may represent a therapeutic opportunity to prevent or treat aGVHD

    Effect of Nitrate and Acetylene on nirS, cnorB, and nosZ Expression and Denitrification Activity in Pseudomonas mandeliiâ–¿

    No full text
    Nitrate acts as an electron acceptor in the denitrification process. The effect of nitrate in the range of 0 to 1,000 mg/liter on Pseudomonas mandelii nirS, cnorB, and nosZ gene expression was studied, using quantitative reverse transcription-quantitative PCR. Denitrification activity was measured by using the acetylene blockage method and gas chromatography. The effect of acetylene on gene expression was assessed by comparing denitrification gene expression in P. mandelii culture grown in the presence or absence of acetylene. The higher the amount of NO3− present, the greater the induction and the longer the denitrification genes remained expressed. nirS gene expression reached a maximum at 2, 4, 4, and 6 h in cultures grown in the presence of 0, 10, 100, and 1,000 mg of KNO3/liter, respectively, while induction of nirS gene ranged from 12- to 225-fold compared to time zero. cnorB gene expression also followed a similar trend. nosZ gene expression did not respond to NO3− treatment under the conditions tested. Acetylene decreased nosZ gene expression but did not affect nirS or cnorB gene expression. These results showed that nirS and cnorB responded to nitrate concentrations; however, significant denitrification activity was only observed in culture with 1,000 mg of KNO3/liter, indicating that there was no relationship between gene expression and denitrification activity under the conditions tested

    Effect of pH and Temperature on Denitrification Gene Expression and Activity in Pseudomonas mandeliiâ–¿

    No full text
    Pseudomonas mandelii liquid cultures were studied to determine the effect of pH and temperature on denitrification gene expression, which was quantified by quantitative reverse transcription-PCR. Denitrification was measured by the accumulation of nitrous oxide (N2O) in the headspace in the presence of acetylene. Levels of gene expression of nirS and cnorB at pH 5 were 539-fold and 6,190-fold lower, respectively, than the levels of gene expression for cells grown at pH 6, 7, and 8 between 4 h and 8 h. Cumulative denitrification levels were 28 μmol, 63 μmol, and 22 μmol at pH 6, 7, and 8, respectively, at 8 h, whereas negligible denitrification was measured at pH 5. P. mandelii cells grown at 20°C and 30°C exhibited 9-fold and 94-fold increases in levels of cnorB expression between 0 h and 2 h, respectively, and an average 17-fold increase in levels of nirS gene expression. In contrast, induction of cnorB and nirS gene expression for P. mandelii cells grown at 10°C did not occur in the first 4 h. Levels of cumulative denitrification at 10 h were 6.6 μmol for P. mandelii cells grown at 10°C and 20°C and 30 μmol for cells grown at 30°C. Overall, levels of cnorB and nirS expression were relatively insensitive to pH values over the range of pH 6 to 8 but were substantially reduced at pH 5, whereas gene expression was sensitive to temperature, with induction and time to achieve maximum gene expression delayed as the temperature decreased from 30°C. Low pH and temperature negatively affected denitrification activity

    Changes in Denitrifier Abundance, Denitrification Gene mRNA Levels, Nitrous Oxide Emissions, and Denitrification in Anoxic Soil Microcosms Amended with Glucose and Plant Residuesâ–¿

    No full text
    In agricultural cropping systems, crop residues are sources of organic carbon (C), an important factor influencing denitrification. The effects of red clover, soybean, and barley plant residues and of glucose on denitrifier abundance, denitrification gene mRNA levels, nitrous oxide (N2O) emissions, and denitrification rates were quantified in anoxic soil microcosms for 72 h. nosZ gene abundances and mRNA levels significantly increased in response to all organic carbon treatments over time. In contrast, the abundance and mRNA levels of Pseudomonas mandelii and closely related species (nirSP) increased only in glucose-amended soil: the nirSP guild abundance increased 5-fold over the 72-h incubation period (P < 0.001), while the mRNA level significantly increased more than 15-fold at 12 h (P < 0.001) and then subsequently decreased. The nosZ gene abundance was greater in plant residue-amended soil than in glucose-amended soil. Although plant residue carbon-to-nitrogen (C:N) ratios varied from 15:1 to 30:1, nosZ gene and mRNA levels were not significantly different among plant residue treatments, with an average of 3.5 × 107 gene copies and 6.9 × 107 transcripts g−1 dry soil. Cumulative N2O emissions and denitrification rates increased over 72 h in both glucose- and plant-tissue-C-treated soil. The nirSP and nosZ communities responded differently to glucose and plant residue amendments. However, the targeted denitrifier communities responded similarly to the different plant residues under the conditions tested despite changes in the quality of organic C and different C:N ratios

    A Noninvasive Blood-based Combinatorial Proteomic Biomarker Assay to Detect Breast Cancer in Women Under the Age of 50 Years

    No full text
    BACKGROUND: Despite significant advances in breast imaging, the ability to detect breast cancer (BC) remains a challenge. To address the unmet needs of the current BC detection paradigm, 2 prospective clinical trials were conducted to develop a blood-based combinatorial proteomic biomarker assay (Videssa Breast) to accurately detect BC and reduce false positives (FPs) from suspicious imaging findings. PATIENTS AND METHODS: Provista-001 and Provista-002 (cohort one) enrolled Breast Imaging Reporting and Data System 3 or 4 women aged under 50 years. Serum was evaluated for 11 serum protein biomarkers and 33 tumor-associated autoantibodies. Individual biomarker expression, demographics, and clinical characteristics data from Provista-001 were combined to develop a logistic regression model to detect BC. The performance was tested using Provista-002 cohort one (validation set). RESULTS: The training model had a sensitivity and specificity of 92.3% and 85.3% (BC prevalence, 7.7%), respectively. In the validation set (BC prevalence, 2.9%), the sensitivity and specificity were 66.7% and 81.5%, respectively. The negative predictive value was high in both sets (99.3% and 98.8%, respectively). Videssa Breast performance in the combined training and validation set was 99.1% negative predictive value, 87.5% sensitivity, 83.8% specificity, and 25.2% positive predictive value (BC prevalence, 5.87%). Overall, imaging resulted in 341 participants receiving follow-up procedures to detect 30 cancers (90.6% FP rate). Videssa Breast would have recommended 111 participants for follow-up, a 67% reduction in FPs (P \u3c .00001). CONCLUSIONS: Videssa Breast can effectively detect BC when used in conjunction with imaging and can substantially reduce unnecessary medical procedures, as well as provide assurance to women that they likely do not have BC

    Law and Narrative: A Bibliography of Recent Work

    No full text
    This bibliography collects work focused specifically on law and narrative, published (approximately) over the last four years (i.e., 2013-17). A significant amount of work touches on narrative, without taking that as its focus; this work will be included in a bibliography of recent work on law and literature more generally (now being compiled)

    Competitive strategy in socially entrepreneurial nonprofit organizations: innovation and differentiation

    No full text
    Social entrepreneurship has attracted an increasing volume of research in an attempt to understand the basis of successful value creation aimed at solving social problems. In an effort to advance social entrepreneurship research beyond its current focus on conceptualizing the concept, this article addresses the role of innovation in achieving greater social impact. Using multiple theoretical case studies, this research finds that innovation-based competitive strategies of socially entrepreneurial nonprofit organizations substantially contribute to the achievement of social value. Innovation-based strategies are uniquely characterized by a primary focus on differentiation, with innovations directed at product, process, and system change levels. They tend to actively involve both externally and internally focused learning. Nonprofit organizations' innovation strategies are strongly influenced by their organizational characteristics, in particular the need to build sustainable organizations. The article concludes with implications for theory and practice and directions for further research
    corecore