109 research outputs found

    Nuclear Breakup of Borromean Nuclei

    Get PDF
    We study the eikonal model for the nuclear-induced breakup of Borromean nuclei, using Li11 and He6 as examples. The full eikonal model is difficult to realize because of six-dimensional integrals, but a number of simplifying approximations are found to be accurate. The integrated diffractive and one-nucleon stripping cross sections are rather insensitive to the neutron-neutron correlation, but the two-nucleon stripping does show some dependence on the correlation. The distribution of excitation energy in the neutron-core final state in one-neutron stripping reactions is quite sensitive to the shell structure of the halo wave function. Experimental data favor models with comparable amounts of s- and p-wave in the Li11 halo.Comment: 34 pages REVTeX, 14 postscript figures. Small changes in comparison with experimen

    Bremsstrahlung Pair Production In Relativistic Heavy Ion Collision

    Get PDF
    We calculate production of electron- and muon-pairs by the bremsstrahlung process in hadron collisions and compare it with the dominant two-photon process. Results for the total cross section are given for proton-proton and heavy-ion collisions at energies of the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC).Comment: 6 pages, Latex, 9 figures using epsf-style. Accepted for publication in Z. Phys.

    Mechanisms for Direct Breakup Reactions

    Get PDF
    We review some simple mechanisms of breakup in nuclear reactions. We mention the spectator breakup, which is described in the post-form DWBA. The relation to other formulations is also indicated. An especially important mechanism is Coulomb dissociation. It is a distinct advantage that the perturbation due to the electric field of the nucleus is exactly known. Therefore firm conclusions can be drawn from such measurements. Some new applications of Coulomb dissociation for nuclear astrophysics are discussed.Comment: 17 pages, 5 figures, to appear in the proceedings of the RCNP-TMU Symposium on Spins in Nuclear and Hadronic Reactions, October 16-18 199

    Biomechanical comparison of the track start and the modified one-handed track start in competitive swimming: an intervention study

    Get PDF
    This study compared the conventional track and a new one-handed track start in elite age group swimmers to determine if the new technique had biomechanical implications on dive performance. Five male and seven female GB national qualifiers participated (mean ± SD: age 16.7 ± 1.9 years, stretched stature 1.76 ± 0.8 m, body mass 67.4 ± 7.9 kg) and were assigned to a control group (n = 6) or an intervention group (n = 6) that learned the new onehanded dive technique. All swimmers underwent a 4-week intervention comprising 12 ± 3 thirty-minute training sessions. Video cameras synchronized with an audible signal and timing suite captured temporal and kinematic data. A portable force plate and load cell handrail mounted to a swim starting block collected force data over 3 trials of each technique. A MANCOVA identified Block Time (BT), Flight Time (FT), Peak Horizontal Force of the lower limbs (PHF) and Horizontal Velocity at Take-off (Vx) as covariates. During the 10-m swim trial, significant differences were found in Time to 10 m (TT10m), Total Time (TT), Peak Vertical Force (PVF), Flight Distance (FD), and Horizontal Velocity at Take-off (Vx) (p < .05). Results indicated that the conventional track start method was faster over 10 m, and therefore may be seen as a superior start after a short intervention. During training, swimmers and coaches should focus on the most statistically significant dive performance variables: peak horizontal force and velocity at take-off, block and flight time

    Multiple electromagnetic electron positron pair production in relativistic heavy ion collisions

    Get PDF
    We calculate the cross sections for the production of one and more electron-positron pairs due to the strong electromagnetic fields in relativistic heavy ion collisions. Using the generating functional of fermions in an external field we derive the N-pair amplitude. Neglecting the antisymmetrisation in the final state we find that the total probability to produce N pairs is a Poisson distribution. We calculate total cross sections for the production of one pair in lowest order and also include higher-order corrections from the Poisson distribution up to third order. Furthermore we calculate cross sections for the production of up to five pairs including corrections from the Poisson distribution.Comment: 13 pages REVTeX, 4 Postscript figures, This and related papers may also be obtained from http://www.phys.washington.edu/~hencken

    Electromagnetic Dissociation as a Tool for Nuclear Structure and Astrophysics

    Get PDF
    Coulomb dissociation is an especially simple and important reaction mechanism. Since the perturbation due to the electric field of the nucleus is exactly known, firm conclusions can be drawn from such measurements. Electromagnetic matrix elements and astrophysical S-factors for radiative capture processes can be extracted from experiments. We describe the basic theory, new results concerning higher order effects in the dissociation of neutron halo nuclei, and briefly review the experimental results obtained up to now. Some new applications of Coulomb dissociation for nuclear astrophysics and nuclear structure physics are discussed.Comment: 10 pages, 1 figure, to appear in Proceedings of the International School on Nuclear Physics; 22nd Course: ``Radioactive Beams for Nuclear and Astro Physics'', Erice/Sicily/Italy, September 16 - 24, 200

    Coherent photon-photon interactions in very peripheral relativistic heavy ion collisions

    Get PDF
    Heavy ions at high velocities provide very strong electromagnetic fields for a very short time. The main characteristics of ultraperipheral relativistic heavy ion collisions are reviewed, characteristic parameters are identified. The main interest in ultraperipheral heavy ion collisions at relativistic ion colliders like the LHC is the interactions of very high energy (equivalent) photons with the countermoving (equivalent) photons and hadrons (protons/ions). The physics of these interactions is quite different from and complementary to the physics of the strong fields achieved with current and future lasers.Comment: 5 pages, 5 figures, invited talk presented at the ELI Workshop and School on Fundamental Physics with Ultra-high Fields (September 29- October 2, 2008, Frauenwoerth, German

    Coherent and incoherent atomic scattering: Formalism and application to pionium interacting with matter

    Get PDF
    The experimental determination of the lifetime of pionium provides a very important test on chiral perturbation theory. This quantity is determined in the DIRAC experiment at CERN. In the analysis of this experiment, the breakup probabilities of of pionium in matter are needed to high accuracy as a theoretical input. We study in detail the influence of the target electrons. They contribute through screening and incoherent effects. We use Dirac-Hartree- Fock-Slater wavefunctions in order to determine the corresponding form factors. We find that the inner-shell electrons contribute less than the weakly bound outer electrons. Furthermore, we establish a more rigorous estimate for the magnitude of the contributions form the transverse current (magnetic terms thus far neglected in the calculations).Comment: Journal of Physics B: Atomic, Molecular and Optical Physics; (accepted; 22 pages, 6 figures, 26 references) Revised version: more detailed description of DIRAC experiment; failure of simplest models for incoherent scattering demonstrated by example

    Nuclear breakup of Borromean nuclei

    Get PDF
    We study the eikonal model for the nuclear-induced breakup of Borromean nuclei, using 11 Li and 6 He as examples. The full eikonal model is difficult to realize because of six-dimensional integrals, but a number of simplifying approximations are found to be accurate. The integrated diffractive and one-nucleon stripping cross sections are rather insensitive to the neutron-neutron correlation, but the two-nucleon stripping does show some dependence on the correlation. The distribution of excitation energy in the neutron-core final state in oneneutron stripping reactions is quite sensitive to the shell structure of the halo wave function. Experimental data favor models with comparable amounts of s and p waves in the 11 Li halo. ͓S0556-2813͑98͒03503-1͔ PACS number͑s͒: 25.60. Gc, 25.70.Mn, 21.45.ϩv, 27.20.ϩ
    corecore