110 research outputs found
Multiple electromagnetic electron positron pair production in relativistic heavy ion collisions
We calculate the cross sections for the production of one and more
electron-positron pairs due to the strong electromagnetic fields in
relativistic heavy ion collisions. Using the generating functional of fermions
in an external field we derive the N-pair amplitude. Neglecting the
antisymmetrisation in the final state we find that the total probability to
produce N pairs is a Poisson distribution. We calculate total cross sections
for the production of one pair in lowest order and also include higher-order
corrections from the Poisson distribution up to third order. Furthermore we
calculate cross sections for the production of up to five pairs including
corrections from the Poisson distribution.Comment: 13 pages REVTeX, 4 Postscript figures, This and related papers may
also be obtained from http://www.phys.washington.edu/~hencken
Biomechanical comparison of the track start and the modified one-handed track start in competitive swimming: an intervention study
This study compared the conventional track and a new one-handed track start in elite age group swimmers to determine if the new technique had biomechanical implications on dive performance. Five male and seven female GB national qualifiers participated (mean ± SD:
age 16.7 ± 1.9 years, stretched stature 1.76 ± 0.8 m, body mass 67.4 ± 7.9 kg) and were assigned to a control group (n = 6) or an intervention group (n = 6) that learned the new onehanded dive technique. All swimmers underwent a 4-week intervention comprising 12 ± 3 thirty-minute training sessions. Video cameras synchronized with an audible signal and timing suite captured temporal and kinematic data. A
portable force plate and load cell handrail mounted to a swim starting block collected force data over 3 trials of each technique. A MANCOVA identified Block Time (BT),
Flight Time (FT), Peak Horizontal Force of the lower limbs (PHF) and Horizontal Velocity at Take-off (Vx) as covariates. During the 10-m swim trial, significant differences were found in Time to 10 m (TT10m), Total Time (TT), Peak Vertical Force (PVF), Flight Distance (FD), and Horizontal Velocity at Take-off (Vx) (p < .05). Results indicated that the conventional track start method was faster over 10 m, and therefore may be seen as a superior start after a short intervention. During training, swimmers and coaches should focus on the most statistically significant dive performance variables: peak horizontal force and velocity at take-off, block and flight time
Equivalent Photon Approach to Simultaneous Excitation in Heavy Ion Collision
We apply the Equivalent Photon Approximation to calculate cross sections for
the simultaneous excitation of two heavy ions in relativistic collisions. We
study especially the excitation of two nuclei to a 1- - state and show that the
equations are symmetric with respect to both ions. We also examine the limit in
which the excitation energy of one of the nuclei goes to zero, which gives the
elastic case. Finally a few remarks about the limits of this approach are made.Comment: 9 pages REVTex, 4 Figures included, see also
http://www.phys.washington.edu/~hencken
QCD and QED dynamics of the EMC effect
Applying exact QCD sum rules for the baryon charge and energy-momentum we
demonstrate that if nucleons are the only degrees of freedom of nuclear wave
function, the structure function of a nucleus would be the additive sum of the
nucleon distributions at the same Bjorken x = AQ^2/2(p_Aq)< 0.5 up to very
small Fermi motion corrections if x>0.05. Thus the difference of the EMC ratio
from one reveals the presence of non-nucleonic degrees of freedom in nuclei.
Using exact QCD sum rules we show that the ratio R_A(x_p,Q^2) used in
experimental studies, where x_p = Q^2/2q_0 m_p deviates from one even if a
nucleus consists of nucleons with small momenta only. Use of the Bjorken x
leads to additional decrease of R_A(x,Q^2) as compared to the x_p plots.
Coherent contribution of equivalent photons into photon component of parton
wave function of a nucleus unambiguously follows from Lorentz transformation of
the rest frame nucleus Coulomb field. For A~200 photons carry ~0.0065 fraction
of the light momentum of nucleus almost compensates the difference between data
analysis in terms of Bjorken x and x_p. Different role of higher twist effects
for Q^2 probed at electron and muon beams is emphasized. Direct observations of
large and predominantly nucleonic short-range correlations in nuclei pose a
serious challenge for most of the models of the EMC effect for x>0.6. The data
are consistent with a scenario in which the hadronic EMC effect reflects
fluctuations of inter nucleon interaction due to fluctuations of color
distribution in the interacting nucleons. The dynamic realization of this
scenario is the model in which the 3q (3qg) configurations with x > 0.5 parton
have a weaker interaction with nearby nucleons, leading to suppression of such
configurations giving a right magnitude of the EMC effect. The directions for
the future studies and challenging questions are outlined.Comment: The sign in the relation of x_Bj and x_p is corrected and the
following discussion is adjusted accordingly. Discussion of the higher twist
effects is adde
Production of QED pairs at small impact parameter in relativistic heavy ion collisions
The STAR collaboration at RHIC is measuring the production of
electron-positron pairs at small impact parameters, larger than but already
close to the range, where the ions interact strongly with each other. We
calculate the total cross section, as well as, differential distributions of
the pair production process with the electromagnetic excitation of both ions in
a semiclassical approach and within a lowest order QED calculation. We compare
the distribution of electron and positron with the one coming from the cross
section calculation without restriction on impact parameter. Finally we give an
outlook of possible results at the LHC.Comment: 15 pages, 8 figure
Structure of the Coulomb and unitarity corrections to the cross section of pair production in ultra-relativistic nuclear collisions
We analyze the structure of the Coulomb and unitarity corrections to the
single pair production as well as the cross section for the multiple pair
production. In the external field approximation we consider the probability of
pair production at fixed impact parameter between colliding
ultra-relativistic heavy nuclei. We obtain the analytical result for this
probability at large as compared to the electron Compton wavelength. We
estimate also the unitary corrections to the total cross section of the
process.Comment: 10 pages, 2 figures, RevTeX, references correcte
Coherent Vector Meson Photoproduction with Nuclear Breakup in Relativistic Heavy Ion Collisions
Relativistic heavy ions are copious sources of virtual photons. The large
photon flux gives rise to a substantial photonuclear interaction probability at
impact parameters where no hadronic interactions can occur. Multiple
photonuclear interactions in a single collision are possible. In this letter,
we use mutual Coulomb excitation of both nuclei as a tag for moderate impact
parameter collisions. We calculate the cross section for coherent vector meson
production accompanied by mutual excitation, and show that the median impact
parameter is much smaller than for untagged production. The vector meson
rapidity and transverse momentum distribution are very different from untagged
exclusive vector meson production.Comment: 14 pages, including 4 figure
Strong suppression of Coulomb corrections to the cross section of e+e- pair production in ultrarelativistic nuclear collisions
The Coulomb corrections to the cross section of pair production in
ultrarelativistic nuclear collisions are calculated in the next-to-leading
approximation with respect to the parameter
( are the Lorentz factors of colliding nuclei). We found
considerable reduction of the Coulomb corrections even for large
due to the suppression of the production of pair
with the total energy of the order of a few electron masses in the rest frame
of one of the nuclei. Our result explains why the deviation from the Born
result were not observed in the experiment at SPS.Comment: 4 pages, RevTe
Coherent and incoherent atomic scattering: Formalism and application to pionium interacting with matter
The experimental determination of the lifetime of pionium provides a very
important test on chiral perturbation theory. This quantity is determined in
the DIRAC experiment at CERN. In the analysis of this experiment, the breakup
probabilities of of pionium in matter are needed to high accuracy as a
theoretical input. We study in detail the influence of the target electrons.
They contribute through screening and incoherent effects. We use Dirac-Hartree-
Fock-Slater wavefunctions in order to determine the corresponding form factors.
We find that the inner-shell electrons contribute less than the weakly bound
outer electrons. Furthermore, we establish a more rigorous estimate for the
magnitude of the contributions form the transverse current (magnetic terms thus
far neglected in the calculations).Comment: Journal of Physics B: Atomic, Molecular and Optical Physics;
(accepted; 22 pages, 6 figures, 26 references) Revised version: more detailed
description of DIRAC experiment; failure of simplest models for incoherent
scattering demonstrated by example
Hot Topics in Ultra-Peripheral Collisions
Ultra-peripheral collisions of relativistic heavy ions involve long-ranged
electromagnetic interactions at impact parameters too large for hadronic
interactions to occur. The nuclear charges are large; with the coherent
enhancement, the cross sections are also large. Many types of photonuclear and
purely electromagnetic interactions are possible. We present here an
introduction to ultra-peripheral collisions, and present four of the most
compelling physics topics. This note developed from a discussion at a workshop
on ``Electromagnetic Probes of Fundamental Physics,'' in Erice, Italy, Oct.
16-21, 2001.Comment: 7 pages, with 3 figures. This developed from a discussion at the
workshop on "Electromagnetic Probes of Fundamental Physics," Oct. 16-21,
Erice, Ital
- …