786 research outputs found

    The nuclear contacts and short range correlations in nuclei

    Full text link
    Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-standing challenge. An approximate description of nuclei can be achieved by separating its short and long range structure. This separation of scales stands at the heart of the nuclear shell model and effective field theories that describe the long-range structure of the nucleus using a mean- field approximation. We present here an effective description of the complementary short-range structure using contact terms and stylized two-body asymptotic wave functions. The possibility to extract the nuclear contacts from experimental data is presented. Regions in the two-body momentum distribution dominated by high-momentum, close-proximity, nucleon pairs are identified and compared to experimental data. The amount of short-range correlated (SRC) nucleon pairs is determined and compared to measurements. Non-combinatorial isospin symmetry for SRC pairs is identified. The obtained one-body momentum distributions indicate dominance of SRC pairs above the nuclear Fermi-momentum.Comment: Accepted for publication in Physics Letters. 6 pages, 2 figure

    Hexagonal Structure of Baby Skyrmion Lattices

    Full text link
    We study the zero-temperature crystalline structure of baby Skyrmions by applying a full-field numerical minimization algorithm to baby Skyrmions placed inside different parallelogramic unit-cells and imposing periodic boundary conditions. We find that within this setup, the minimal energy is obtained for the hexagonal lattice, and that in the resulting configuration the Skyrmion splits into quarter-Skyrmions. In particular, we find that the energy in the hexagonal case is lower than the one obtained on the well-studied rectangular lattice, in which splitting into half-Skyrmions is observed.Comment: RevTeX, 7 pages, 6 figure

    Quantum gates with controlled adiabatic evolutions

    Full text link

    Perancangan Aplikasi Travel Guide Objek Wisata Alam Kabupaten Lumajang

    Full text link
    Lumajang memiliki banyak objek wisata yang mampu meningkatkan pendapatan daerah Kabupaten Lumajang, selain itu sudah banyak wisatawan asing yang berkunjung, namun hanya mengetahui sedikit objek wisata. Perancangan ini dibuat untuk mengenalkan objek wisata alam yang ada di Kabupaten Lumajang kepada wisatawan mancanegara dan domestik melalui sebuah aplikasi. Aplikasi ini memberikan informasi serta didukung oleh fotografi panorama dan map direction yang selain memberikan informasi, juga mempermudah wisatawan yang ingin berkunjung dan mendalami objek wisata alam yang ada di Kabupaten Lumajang. Melalui perancangan aplikasi ini diharapkan dapat membantu meningkatkan kunjungan wisatawan dan mendongkrak pendapatan daerah Kabupaten Lumajang

    Generalized Contact Formalism Analysis of the 4^4He(e,e′pN)(e,e'pN) Reaction

    Get PDF
    Measurements of short-range correlations in exclusive 4^4He(e,e′pN)(e,e'pN) reactions are analyzed using the Generalized Contact Formalism (GCF). We consider both instant-form and light-cone formulations with both the AV18 and local N2LO(1.0) nucleon-nucleon (NNNN) potentials. We find that kinematic distributions, such as the reconstructed pair opening angle, recoil neutron momentum distribution, and pair center of mass motion, as well as the measured missing energy, missing mass distributions, are all well reproduced by GCF calculations. The missing momentum dependence of the measured 4^4He(e,e′pN)(e,e'pN) / 4^4He(e,e′p)(e,e'p) cross-section ratios, sensitive to nature of the NNNN interaction at short-distacnes, are also well reproduced by GCF calculations using either interaction and formulation. This gives credence to the GCF scale-separated factorized description of the short-distance many-body nuclear wave-function.Comment: Accepted for publication in Physics Letters B. 8 pages, 4 figures and online supplementary material

    Structural, electronic, and magnetic characteristics of Np_2Co_(17)

    Get PDF
    A previously unknown neptunium-transition-metal binary compound Np_2Co_(17) has been synthesized and characterized by means of powder x-ray diffraction, ^(237)Np Mössbauer spectroscopy, superconducting-quantum-interference-device magnetometry, and x-ray magnetic circular dichroism (XMCD). The compound crystallizes in a Th_2Ni_(17)-type hexagonal structure with room-temperature lattice parameters α=8.3107(1) Å and c=8.1058(1) Å. Magnetization curves indicate the occurrence of ferromagnetic order below T_C>350 K. Mössbauer spectra suggest a Np^(3+) oxidation state and give an ordered moment of μ_(Np)=1.57(4) μ_B and μ_(Np)=1.63(4) μ_B for the Np atoms located, respectively, at the 2b and 2d crystallographic positions of the P6_3/mmc space group. Combining these values with a sum-rule analysis of the XMCD spectra measured at the neptunium M_(4,5) absorption edges, one obtains the spin and orbital contributions to the site-averaged Np moment [μ_S=−1.88(9) μ_B, μ_L=3.48(9) μ_B]. The ratio between the expectation value of the magnetic-dipole moment and the spin magnetic moment (m_(md)/μS=+1.36) is positive as predicted for localized 5f electrons and lies between the values calculated in intermediate-coupling (IC) and jj approximations. The expectation value of the angular part of the spin-orbit-interaction operator is in excellent agreement with the IC estimate. The ordered moment averaged over the four inequivalent Co sites, as obtained from the saturation value of the magnetization, is μ_(Co)≃1.6 μ_B. The experimental results are discussed against the predictions of first-principles electronic-structure calculations based on the spin-polarized local-spin-density approximation plus the Hubbard interaction
    • …
    corecore