619 research outputs found

    Can Long-Range Nuclear Properties Be Influenced By Short Range Interactions? A chiral dynamics estimate

    Full text link
    Recent experiments and many-body calculations indicate that approximately 20\% of the nucleons in medium and heavy nuclei (A≥12A\geq12) are part of short-range correlated (SRC) primarily neutron-proton (npnp) pairs. We find that using chiral dynamics to account for the formation of npnp pairs due to the effects of iterated and irreducible two-pion exchange leads to values consistent with the 20\% level. We further apply chiral dynamics to study how these correlations influence the calculations of nuclear charge radii, that traditionally truncate their effect, to find that they are capable of introducing non-negligible effects.Comment: 6 pages, 0 figures. This version includes many improvement

    Constraints on the large-x d/u ratio from electron-nucleus scattering at x>1

    Full text link
    Recently the ratio of neutron to proton structure functions F_2n/F_2p was extracted from a phenomenological correlation between the strength of the nuclear EMC effect and inclusive electron-nucleus cross section ratios at x>1. Within conventional models of nuclear smearing, this "in-medium correction" (IMC) extraction constrains the size of nuclear effects in the deuteron structure functions, from which the neutron structure function F_2n is usually extracted. The IMC data determine the resulting proton d/u quark distribution ratio, extrapolated to x=1, to be 0.23 +- 0.09 with a 90% confidence level. This is well below the SU(6) symmetry limit of 1/2 and significantly above the scalar diquark dominance limit of 0.Comment: 4 pages, 3 figure

    Laser Calibration System for Time of Flight Scintillator Arrays

    Full text link
    A laser calibration system was developed for monitoring and calibrating time of flight (TOF) scintillating detector arrays. The system includes setups for both small- and large-scale scintillator arrays. Following test-bench characterization, the laser system was recently commissioned in experimental Hall B at the Thomas Jefferson National Accelerator Facility for use on the new Backward Angle Neutron Detector (BAND) scintillator array. The system successfully provided time walk corrections, absolute time calibration, and TOF drift correction for the scintillators in BAND. This showcases the general applicability of the system for use on high-precision TOF detectors.Comment: 11 pages, 11 figure

    Generalized Contact Formalism Analysis of the 4^4He(e,e′pN)(e,e'pN) Reaction

    Get PDF
    Measurements of short-range correlations in exclusive 4^4He(e,e′pN)(e,e'pN) reactions are analyzed using the Generalized Contact Formalism (GCF). We consider both instant-form and light-cone formulations with both the AV18 and local N2LO(1.0) nucleon-nucleon (NNNN) potentials. We find that kinematic distributions, such as the reconstructed pair opening angle, recoil neutron momentum distribution, and pair center of mass motion, as well as the measured missing energy, missing mass distributions, are all well reproduced by GCF calculations. The missing momentum dependence of the measured 4^4He(e,e′pN)(e,e'pN) / 4^4He(e,e′p)(e,e'p) cross-section ratios, sensitive to nature of the NNNN interaction at short-distacnes, are also well reproduced by GCF calculations using either interaction and formulation. This gives credence to the GCF scale-separated factorized description of the short-distance many-body nuclear wave-function.Comment: Accepted for publication in Physics Letters B. 8 pages, 4 figures and online supplementary material

    Extracing the number of short-range corerlated nucleon pairs from inclusive electron scattering data

    Get PDF
    The extraction of the relative abundances of short-range correlated (SRC) nucleon pairs from inclusive electron scattering is studied using the generalized contact formalism (GCF) with several nuclear interaction models. GCF calculations can reproduce the observed scaling of the cross-section ratios for nuclei relative to deuterium at high-xBx_B and large-Q2Q^2, a2=(σA/A)/(σd/2)a_2=(\sigma_A/A)/(\sigma_d/2). In the non-relativistic instant-form formulation, the calculation is very sensitive to the model parameters and only reproduces the data using parameters that are inconsistent with ab-initio many-body calculations. Using a light-cone GCF formulation significantly decreases this sensitivity and improves the agreement with ab-initio calculations. The ratio of similar mass isotopes, such as 40^{40}Ca and 48^{48}Ca, should be sensitive to the nuclear asymmetry dependence of SRCs, but is found to also be sensitive to low-energy nuclear structure. Thus the empirical association of SRC pair abundances with the measured a2a_2 values is only accurate to about 20%20\%. Improving this will require cross-section calculations that reproduce the data while properly accounting for both nuclear structure and relativistic effects.Comment: Accepted for publication in Phys. Rev. C (Lett). 6 pages, 4 figures, and online supplementary material

    Extracting the Number of Short Range Correlated Nucleon Pairs from Inclusive Electron Scattering Data

    Get PDF
    The extraction of the relative abundances of short-range correlated (SRC) nucleon pairs from inclusive electron scattering is studied using the generalized contact formalism (GCF) with several nuclear interaction models. GCF calculations can reproduce the observed scaling of the cross-section ratios for nuclei relative to deuterium at high xB and large Q2, a2 = (σA/A)/(σd/2). In the nonrelativistic instant-form formulation, the calculation is very sensitive to the model parameters and only reproduces the data using parameters that are inconsistent with ab initio many-body calculations. Using a light-cone GCF formulation significantly decreases this sensitivity and improves the agreement with ab initio calculations. The ratio of similar mass isotopes, such as 40Ca and 48Ca, should be sensitive to the nuclear asymmetry dependence of SRCs, but is found to also be sensitive to low-energy nuclear structure. Thus the empirical association of SRC pair abundances with the measured a2 values is only accurate to about 20%. Improving this will require cross-section calculations that reproduce the data while properly accounting for both nuclear structure and relativistic effects
    • …
    corecore