5 research outputs found

    A Model for the Coregulation of Smooth Muscle Actomyosin by Caldesmon, Calponin, Tropomyosin and Myosin Light Chain Phosphorylation

    Get PDF
    The purpose of these studies was to evaluate the effects of the actin-binding proteins tropomyosin. caldesmon, and calponin on the activation of smooth muscle actomyosin by phosphorylation of the regulatory light chain of myosin (LC20), and to interpret these findings in the context of a two-state kinetic model for the cross-bridge cycle. An in vitro motility assay was used to broadly classify each regulatory protein according to whether it modulates the apparent on-rate for cross bridges (fapp) or the apparent off-rate (garp). In addition to measuring actin-filament velocity, a method was developed to measure relative changes in the force exerted on actin filaments under isometric conditions. Based primarily on the results of these motility studies, a qualitative model is proposed in which LC20 phosphorylation, tropomyosin, and caldesmon all regulate fapp and calponin regulates gapp- The model predicts that the sensitivity of activation by LC20 phosphorylation is determined by tropomyosin. caldesmon, and calponin, whereas unloaded shortening velocity is regulated primarily by calponin

    Induction of Myocarditis and Valvuluitis in Lewis Rats by Different Epitopes of Cardiac Myosin and its Implications in Rheumatic Carditis

    Get PDF
    Immune responses against cardiac myosin and group A streptococcal M protein have been implicated in the pathogenesis of rheumatic heart disease. Although cardiac myosin is known to produce myocarditis in susceptible animals, it has never been investigated for its role in production of valvular heart disease, the most serious sequelae of group A streptococcal infection in acute rheumatic fever. In our study, cardiac myosin induced valvulitis in the Lewis rat, and epitopes responsible for production of valvulitis were located in the rod region. Human and rat cardiac myosins induced severe myocarditis in the Lewis rats as expected. A purified S2 fragment (amino acid sequences 842 to 1295) produced the most severe myocarditis as well as valvulitis. Different regions of light meromyosin produced valvulitis (residues 1685 to 1936) or myocarditis (residues 1529 to 1611). Because streptococcal M proteins produced valvular heart disease in Lewis rats and have been linked to anti-cardiac myosin responses, we reacted myosin-sensitized lymphocytes isolated from the hearts of Lewis rats with peptides of streptococcal M5 protein in tritiated thymidine assays. Infiltrating lymphocytes responded most strongly to peptides within the B repeat region of streptococcal M protein. These data show direct evidence that immune responses against cardiac myosin lead to valvular heart disease and the infiltration of the heart by streptococcal M protein reactive T lymphocytes

    Cytotoxic mAb from Rheumatic Carditis Recognizes Heart Valves and Laminin

    Get PDF
    Anti-streptococcal antibodies cross-reactive with N-acetyl-bD-glucosamine (GlcNAc) and myosin are present in the sera of patients with rheumatic fever (RF). However, their role in tissue injury is not clear. In this study, we show that anti-GlcNAc/anti-myosin mAb 3.B6 from a rheumatic carditis patient was cytotoxic for human endothelial cell lines and reacted with human valvular endothelium and underlying basement membrane. Reactivity of mAb 3.B6 with the valve was inhibited by human cardiac myosin \u3e laminin \u3e GlcNAc. The mAb 3.B6 epitopes were localized in fragments of human cardiac myosin, including heavy meromyosin (HMM), the S1 subfragment, and two light meromyosin (LMM) peptides containing amino acid sequences KEALISSLTRGKLTYTQQ (LMM 1) and SERVQLLHSQNTSLINQK (LMM 33). A novel feature of mAb 3.B6 was its reactivity with the extracellular matrix protein laminin, which may explain its reactivity with the valve surface. A laminin A-chain peptide (HTQNT) that includes homology to LMM33 inhibited the reactivity of mAb 3.B6 with human valve. These data support the hypothesis that cross-reactive antibodies in rheumatic carditis cause injury at the endothelium and underlying matrix of the valve
    corecore