38 research outputs found

    The influence of retardation and dielectric environments on interatomic Coulombic decay

    Get PDF
    Interatomic Coulombic decay (ICD) is a very efficient process by which high-energy radiation is redistributed between molecular systems, often producing a slow electron, which can be damaging to biological tissue. During ICD, an initially-ionised and highly-excited donor species undergoes a transition where an outer-valence electron moves to a lower-lying vacancy, transmitting a photon with sufficient energy to ionise an acceptor species placed close by. Traditionally the ICD process has been described via ab initio quantum chemistry based on electrostatics in free space, which cannot include the effects of retardation stemming from the finite speed of light, nor the influence of a dispersive, absorbing, discontinuous environment. Here we develop a theoretical description of ICD based on macroscopic quantum electrodynamics in dielectrics, which fully incorporates all these effects, enabling the established power and broad applicability of macroscopic quantum electrodynamics to be unleashed across the fast-developing field of ICD

    Sulfation of a High Endothelial Venule–Expressed Ligand for L-Selectin: Effects on Tethering and Rolling of Lymphocytes

    Get PDF
    During lymphocyte homing, L-selectin mediates the tethering and rolling of lymphocytes on high endothelial venules (HEVs) in secondary lymphoid organs. The L-selectin ligands on HEV are a set of mucin-like glycoproteins, for which glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1) is a candidate. Optimal binding in equilibrium measurements requires sulfation, sialylation, and fucosylation of ligands. Analysis of GlyCAM-1 has revealed two sulfation modifications (galactose [Gal]-6-sulfate and N-acetylglucosamine [GlcNAc]-6-sulfate) of sialyl Lewis x. Recently, three related sulfotransferases (keratan sulfate galactose-6-sulfotransferase [KSGal6ST], high endothelial cell N-acetylglucosamine-6-sulfotransferase [GlcNAc6ST], and human GlcNAc6ST) were cloned, which can generate Gal-6-sulfate and GlcNAc-6-sulfate in GlyCAM-1. Imparting these modifications to GlyCAM-1, together with appropriate fucosylation, yields enhanced rolling ligands for both peripheral blood lymphocytes and Jurkat cells in flow chamber assays as compared with those generated with exogenous fucosyltransferase. Either sulfation modification results in an increased number of tethered and rolling lymphocytes, a reduction in overall rolling velocity associated with more frequent pausing of the cells, and an enhanced resistance of rolling cells to detachment by shear. All of these effects are predicted to promote the overall efficiency of lymphocyte homing. In contrast, the rolling interactions of E-selectin transfectants with the same ligands are not affected by sulfation

    Induction of PNAd and N-acetylglucosamine 6-O-sulfotransferases 1 and 2 in mouse collagen-induced arthritis

    Get PDF
    BACKGROUND: Leukocyte recruitment across blood vessels is fundamental to immune surveillance and inflammation. Lymphocyte homing to peripheral lymph nodes is mediated by the adhesion molecule, L-selectin, which binds to sulfated carbohydrate ligands on high endothelial venules (HEV). These glycoprotein ligands are collectively known as peripheral node addressin (PNAd), as defined by the function-blocking monoclonal antibody known as MECA-79. The sulfation of these ligands depends on the action of two HEV-expressed N-acetylglucosamine 6-O-sulfotransferases: GlcNAc6ST-2 and to a lesser degree GlcNAc6ST-1. Induction of PNAd has also been shown to occur in a number of human inflammatory diseases including rheumatoid arthritis (RA). RESULTS: In order to identify an animal model suitable for investigating the role of PNAd in chronic inflammation, we examined the expression of PNAd as well as GlcNAc6ST-1 and -2 in collagen-induced arthritis in mice. Here we show that PNAd is expressed in the vasculature of arthritic synovium in mice immunized with collagen but not in the normal synovium of control animals. This de novo expression of PNAd correlates strongly with induction of transcripts for both GlcNAc6ST-1 and GlcNAc6ST-2, as well as the expression of GlcNAc6ST-2 protein. CONCLUSION: Our results demonstrate that PNAd and the sulfotransferases GlcNAc6ST-1 and 2 are induced in mouse collagen-induced arthritis and suggest that PNAd antagonists or inhibitors of the enzymes may have therapeutic benefit in this widely-used mouse model of RA

    Signature of short-range van der Waals forces observed in Poisson spot diffraction with indium atoms

    Get PDF
    The phase of de Broglie matter waves is a sensitive probe for small forces. In particular, the attractive van der Waals force experienced by polarizable atoms in the close vicinity of neutral surfaces is of importance in nanoscale systems. It results in a phase shift that can be observed in matter-wave diffraction experiments. Here, we observe Poisson spot diffraction of indium atoms at submillimeter distances behind spherical submicron silicon dioxide particles to probe the dispersion forces between atoms and the particle surfaces. We compare the measured relative intensity of Poisson’s spot to theoretical results derived from first principles in an earlier communication and find a clear signature of the atom-surface interaction

    Sulfation of L-Selectin Ligands by an HEV-Restricted Sulfotransferase Regulates Lymphocyte Homing to Lymph Nodes

    Get PDF
    AbstractLymphocytes home to lymph nodes, using L-selectin to bind specific ligands on high endothelial venules (HEV). In vitro studies implicate GlcNAc-6-sulfate as an essential posttranslational modification for ligand activity. Here, we show that genetic deletion of HEC-GlcNAc6ST, a sulfotransferase that is highly restricted to HEV, results in the loss of the binding of recombinant L-selectin to the luminal aspect of HEV, elimination of lymphocyte binding in vitro, and markedly reduced in vivo homing. Reactivity with MECA 79, an adhesion-blocking mAb that stains HEV in lymph nodes and vessels in chronic inflammatory sites, is also lost from the luminal aspects of HEV. These results establish a critical role for HEC-GlcNAc6ST in lymphocyte trafficking and suggest it as an important therapeutic target
    corecore