61 research outputs found

    Thermodynamics of Ion Separation by Electrosorption

    Full text link
    We present a simple, top-down approach for the calculation of minimum energy consumption of electrosorptive ion separation using variational form of the (Gibbs) free energy. We focus and expand on the case of electrostatic capacitive deionization (CDI), and the theoretical framework is independent of details of the double-layer charge distribution and is applicable to any thermodynamically consistent model, such as the Gouy-Chapman-Stern (GCS) and modified Donnan (mD) models. We demonstrate that, under certain assumptions, the minimum required electric work energy is indeed equivalent to the free energy of separation. Using the theory, we define the thermodynamic efficiency of CDI. We explore the thermodynamic efficiency of current experimental CDI systems and show that these are currently very low, less than 1% for most existing systems. We applied this knowledge and constructed and operated a CDI cell to show that judicious selection of the materials, geometry, and process parameters can be used to achieve a 9% thermodynamic efficiency (4.6 kT energy per removed ion). This relatively high value is, to our knowledge, by far the highest thermodynamic efficiency ever demonstrated for CDI. We hypothesize that efficiency can be further improved by further reduction of CDI cell series resistances and optimization of operational parameters

    Two-Dimensional Porous Electrode Model for Capacitive Deionization

    No full text
    Ion transport in porous conductive materials is of great importance in a variety of electrochemical systems including batteries and supercapacitors. We here analyze the coupling of flow and charge transport and charge capacitance in capacitive deionization (CDI). In CDI, a pair of porous carbon electrodes is employed to electrostatically retain and remove ionic species from aqueous solutions. We here develop and solve a novel unsteady two-dimensional model for capturing the ion adsorption/desorption dynamics in a flow-between CDI system. We use this model to study the complex, nonlinear coupling between electromigration, diffusion, and advection of ions. We also fabricated a laboratory-scale CDI cell which we use to measure the near-equilibrium, cumulative adsorbed salt, and electric charge as a function of applied external voltage. We use these integral measures to validate and calibrate this model. We further present a detailed computational study of the spatiotemporal adsorption/desorption dynamics under constant voltage and constant flow conditions. We show results for low (20 mM KCl) and relatively high (200 mM KCl) inlet ion concentrations and identify effects of ion starvation on desalination. We show that in both cases electromigrative transport eventually becomes negligible and diffusive ion transport reduces the desalination rate

    Ion selectivity in capacitive deionization with functionalized electrode: Theory and experimental validation

    No full text
    Capacitive deionization (CDI) is a promising technique for salt removal and may have potential for highly selective removal of ion species. In this work, we take advantage of functional groups usually used with ionic exchange resins and apply these to CDI. To this end, we functionalize activated carbon with a quaternary amines surfactant and use this surface to selectively and passively (no applied field) trap nitrate ions. We then set the cell voltage to a constant value to regenerate these electrodes, resulting in an inverted capacitive deionization (i-CDI) operation. Unlike resins, we avoid use of concentrated chemicals for regeneration. We measure the selectivity of nitrate versus chloride ions as a function of regeneration voltage and initial chloride concentration. We experimentally demonstrate up to about 6.5-fold (observable) selectivity in a cycle with a regeneration voltage of 0.4 V. We also demonstrate a novel multi-pass, air-flush i-CDI operation to selectively enrich nitrate with high water recovery. We further present a dynamic, multi-species electrosorption and equilibrium solution-to-surface chemical reaction model and validate the model with detailed measurements. Our i-CDI system exhibits higher nitrate selectivity at lower voltages; making it possible to reduce NaNO3 concentrations from ∼170 ppm to below the limit of maximum allowed values for nitrate in drinking water of about 50 ppm NaNO3. Keywords: Ion selectivity, Capacitive deionization, Nitrate, Surface charge, Surfactant treatmen

    Electrochemically Mediated Direct CO2 Capture by a Stackable Bipolar Cell

    No full text
    The unprecedented increase in atmospheric CO2 concentration calls for effective carbon capture technologies. With distributed sources contributing to about half of the overall emission, CO2 capture from the atmosphere [direct air capture, (DAC)] is more relevant than ever. Herein, an electrochemically mediated DAC system is reported which utilizes affinity of redox-active quinone moieties towards CO2 molecules, and unlike incumbent chemisorption technologies which require temperature or pH swing, relies solely on the electrochemical voltage for CO2 capture and release. The design and operation of a DAC system is demonstrated with stackable bipolar cells using quinone chemistry. Specifically, poly(vinylanthraquinone) (PVAQ) negative electrode undergoes a two-electron reduction reaction and reversibly complexes with CO2 , leading to CO2 sequestration from the feed stream. The subsequent PVAQ oxidation, conversely, results in release of CO2 . The performance of both small- and meso-scale cells for DAC are evaluated with feed CO2 concentrations as low as 400 ppm (0.04 %), and energy consumption is demonstrated as low as 113 kJ per mole of CO2 captured. Notably, the bipolar cell construct is modular and expandable, equally suitable for small and large plants. Moving forward, this work presents a viable and highly customizable electrochemical method for DAC

    Thermodynamics of Ion Separation by Electrosorption

    No full text
    © 2018 American Chemical Society. We present a simple, top-down approach for the calculation of minimum energy consumption of electrosorptive ion separation using variational form of the (Gibbs) free energy. We focus and expand on the case of electrostatic capacitive deionization (CDI). The theoretical framework is independent of details of the double-layer charge distribution and is applicable to any thermodynamically consistent model, such as the Gouy-Chapman-Stern and modified Donnan models. We demonstrate that, under certain assumptions, the minimum required electric work energy is indeed equivalent to the free energy of separation. Using the theory, we define the thermodynamic efficiency of CDI. We show that the thermodynamic efficiency of current experimental CDI systems is currently very low, around 1% for most existing systems. We applied this knowledge and constructed and operated a CDI cell to show that judicious selection of the materials, geometry, and process parameters can lead to a 9% thermodynamic efficiency and 4.6 kT per removed ion energy cost. This relatively high thermodynamic efficiency is, to our knowledge, by far the highest thermodynamic efficiency ever demonstrated for traditional CDI. We hypothesize that efficiency can be further improved by further reduction of CDI cell series resistances and optimization of operational parameters
    corecore