32 research outputs found

    Frequent induction of chromosomal aberrations in in vivo skin fibroblasts after allogeneic stem cell transplantation: hints to chromosomal instability after irradiation

    Get PDF
    BACKGROUND: Total body irradiation (TBI) has been part of standard conditioning regimens before allogeneic stem cell transplantation for many years. Its effect on normal tissue in these patients has not been studied extensively. METHOD: We studied the in vivo cytogenetic effects of TBI and high-dose chemotherapy on skin fibroblasts from 35 allogeneic stem cell transplantation (SCT) patients. Biopsies were obtained prospectively (n = 18 patients) before, 3 and 12 months after allogeneic SCT and retrospectively (n = 17 patients) 23-65 months after SCT for G-banded chromosome analysis. RESULTS: Chromosomal aberrations were detected in 2/18 patients (11 %) before allogeneic SCT, in 12/13 patients (92 %) after 3 months, in all patients after 12 months and in all patients in the retrospective group after allogeneic SCT. The percentage of aberrant cells was significantly higher at all times after allogeneic SCT compared to baseline analysis. Reciprocal translocations were the most common aberrations, but all other types of stable, structural chromosomal aberrations were also observed. Clonal aberrations were observed, but only in three cases they were detected in independently cultured flasks. A tendency to non-random clustering throughout the genome was observed. The percentage of aberrant cells was not different between patients with and without secondary malignancies in this study group. CONCLUSION: High-dose chemotherapy and TBI leads to severe chromosomal damage in skin fibroblasts of patients after SCT. Our long-term data suggest that this damage increases with time, possibly due to in vivo radiation-induced chromosomal instability

    Impact of early remission by induction therapy on allogeneic stem cell transplantation for acute myeloid leukemia with an intermediate risk karyotype in first complete remission

    Get PDF
    For patients with acute myeloid leukemia (AML) early achievement of remission during induction treatment is an important predictor for long-term outcome irrespective of the type of consolidation therapy employed. Here, we retrospectively examined the prognostic impact of early remission (ER) versus delayed remission (DR) in a cohort of 132 AML patients with an intermediate risk karyotype undergoing allogeneic stem cell transplantation (alloSCT) in first complete remission (CR1). In contrast to patients showing DR, patients achieving ER had a significantly higher 3-year overall survival (OS) and disease-free survival (DFS) of 76% versus 54% (p=0.03) and 76% versus 53% (p=0.03). Likewise, three years after alloSCT the cumulative incidence of relapse (CI-R) was significantly lower in the ER subgroup as compared to patients achieving DR, i.e. 10% versus 35% (p=0.004), whereas non-relapse mortality (NRM) did not differ significantly. Multivariate analysis identified DR as an independent prognosticator for an inferior DFS (HR 3.37, p=0.002) and a higher CI-R (HR 3.55, p=0.002). Taken together, these data may indicate that the rapid achievement of remission predicts a favorable outcome in patients with intermediate risk AML undergoing alloSCT in CR1. In turn, the adverse effect of DR may not be fully overcome by alloSCT

    Targeted therapy of the XIAP/proteasome pathway overcomes TRAIL-resistance in carcinoma by switching apoptosis signaling to a Bax/Bak-independent 'type I' mode

    Get PDF
    TRAIL is a promising anticancer agent, capable of inducing apoptosis in a wide range of treatment-resistant tumor cells. In 'type II' cells, the death signal triggered by TRAIL requires amplification via the mitochondrial apoptosis pathway. Consequently, deregulation of the intrinsic apoptosis-signaling pathway, for example, by loss of Bax and Bak, confers TRAIL-resistance and limits its application. Here, we show that despite resistance of Bax/Bak double-deficient cells, TRAIL-treatment resulted in caspase-8 activation and complete processing of the caspase-3 proenzymes. However, active caspase-3 was degraded by the proteasome and not detectable unless the XIAP/proteasome pathway was inhibited. Direct or indirect inhibition of XIAP by RNAi, Mithramycin A or by the SMAC mimetic LBW-242 as well as inhibition of the proteasome by Bortezomib overcomes TRAIL-resistance of Bax/Bak double-deficient tumor cells. Moreover, activation and stabilization of caspase-3 becomes independent of mitochondrial death signaling, demonstrating that inhibition of the XIAP/proteasome pathway overcomes resistance by converting 'type II' to 'type I' cells. Our results further demonstrate that the E3 ubiquitin ligase XIAP is a gatekeeper critical for the 'type II' phenotype. Pharmacological manipulation of XIAP therefore is a promising strategy to sensitize cells for TRAIL and to overcome TRAIL-resistance in case of central defects in the intrinsic apoptosis-signaling pathway

    Long-term outcomes of allogeneic haematopoietic stem cell transplantation for adult cerebral X-linked adrenoleukodystrophy

    Get PDF
    The adult cerebral inflammatory form of X-linked adrenoleukodystrophy is a rapidly progressive neurodegenerative disease, as devastating as childhood cerebral adrenoleukodystrophy. Allogeneic haematopoietic stem cell transplantation has been demonstrated to provide long-term neurological benefits for boys with the childhood cerebral form, but results in adults are sparse and inconclusive. We analysed data from 14 adult males with adult cerebral adrenoleukodystrophy treated with allogeneic haematopoietic stem cell transplantation on a compassionate basis in four European centres. All presented with cerebral demyelinating lesions and gadolinium enhancement. Median age at diagnosis of adult cerebral adrenoleukodystrophy was 33 years (range 21–48 years). In addition to cerebral inflammation, five patients had established severe motor disability from adrenomyeloneuropathy affecting only the spinal cord and peripheral nerves (Expanded Disability Status Scale score ≥ 6). Eight patients survived (estimated survival 57 ± 13%) with a median follow-up of 65 months (minimum 38 months). Death was directly transplant-/infection-related (n = 3), due to primary disease progression in advanced adult cerebral adrenoleukodystrophy (n = 1), or secondary disease progression (n = 2) after transient multi-organ failure or non-engraftment. Specific complications during stem cell transplantation included deterioration of motor and bladder functions (n = 12) as well as behavioural changes (n = 8). Arrest of progressive cerebral demyelination and prevention of severe loss of neurocognition was achieved in all eight survivors, but deterioration of motor function occurred in the majority (n = 5). Limited motor dysfunction (Expanded Disability Status Scale score < 6) prior to transplantation was associated with significantly improved survival [78 ± 14% (n = 9) versus 20 ± 18%(n = 5); P < 0.05] and maintenance of ambulation (Expanded Disability Status Scale score < 7) post-transplant (78% versus 0%; P = 0.021). In contrast, bilateral involvement of the internal capsule on brain MRI was associated with poorer survival [20 ± 18% (n = 5) versus 78 ± 14% (n = 9); P < 0.05]. This study is the first to support the feasibility, complications and potential long-term neurological benefit of allogeneic haematopoietic stem cell transplantation in adult cerebral adrenoleukodystrophy. Further studies are warranted to attempt to improve outcomes through patient selection and optimization of transplantation protocols

    Cooperative effect of p21Cip1/WAF-1 and 14-3-3sigma on cell cycle arrest and apoptosis induction by p14ARF

    No full text
    P14(ARF) (p19(ARF) in the mouse) plays a central role in the regulation of cellular proliferation. Although the capacity of p14(ARF) to induce a cell cycle arrest in G1 phase depends on a functional p53/p21-signaling axis, the G2 arrest triggered by p14(ARF) is p53/p21-independent. Using isogeneic HCT116 cells either wild-type or homozygously deleted for p21, 14-3-3sigma or both, we further investigated the cooperative effect of p21 and 14-3-3sigma on cell cycle regulation and apoptosis induction by p14(ARF). In contrast to DNA damage, which induces mitotic catastrophe in 14-3-3sigma-deficient cells, we show here that the expression of p14(ARF) triggers apoptotic cell death, as evidenced by nuclear DNA fragmentation and induction of pan-caspase activities, irrespective of the presence or absence of 14-3-3sigma. The activation of the intrinsic mitochondrial apoptosis pathway by p14(ARF) was confirmed by cytochrome c release from mitochondria and induction of caspase-9- (LEHDase) and caspase-3/7-like (DEVDase) activities. Moreover, 14-3-3sigma/p21 double-deficient cells were exceedingly sensitive to apoptosis induction by p14(ARF) as compared to wild-type cells or cells lacking either gene alone. Notably, p14(ARF)-induced apoptosis was preceded by an arrest in the G2 phase of cell cycle, which coincided with downregulation of cdc2 (cdk1) protein expression and lack of its nuclear localization. This indicates that p14(ARF) impairs mitotic entry by targeting the distal DNA damage-signaling pathway and induces apoptotic cell death, rather than mitotic catastrophe, out of a transient G2 arrest. Furthermore, our data delineate that the disruption of G2/M cell cycle checkpoint control critically determines the sensitivity of the cell toward p14(ARF)-induced mitochondrial apoptosis

    A modified EBMT risk score predicts the outcome of patients with acute myeloid leukemia receiving allogeneic stem cell transplants

    No full text
    The systematic and standardized pre-transplant risk assessment represents an important tool to predict the outcome of patients undergoing allogeneic stem cell transplantation (alloSCT). To investigate the capacity of a modified EBMT (mEBMT) risk score to predict the outcome of patients with acute myeloid leukemia (AML) receiving allogeneic stem cell transplants, we retrospectively analyzed 214 patients transplanted at our center between 1995 and 2008. Overall survival (OS) of the whole cohort at 1, 3, and 5 years was 62%, 48%, and 45%, whereas the cumulative incidence of relapse or non-relapse mortality (NRM) was 26%, 33%, and 33% or 19%, 21%, and 22%. In univariate analysis a higher mEBMT risk score was associated with an inferior OS ranging from 69% for patients with a score of 0/1 to 26% for patients with a score of 5/6 at 5 years (p<0.0001) and steadily increasing hazard ratios for each additional score point. Likewise, a higher mEBMT risk score was associated with an increased incidence of relapse (p=0.049). Importantly, the prognostic value of the mEBMT risk score in terms of OS and relapse was maintained in multivariate analysis. Taken together, this indicates that a mEBMT risk score may be used to predict the outcome of patients with AML following alloSCT

    Smac induces cytochrome c release and apoptosis independently from Bax/Bcl-xL in a strictly caspase-3-dependent manner in human carcinoma cells

    No full text
    The mitochondrial apoptosis pathway mediates cell death through the release of various pro-apoptotic factors including cytochrome c and Smac, the second mitochondrial activator of caspases, into the cytosol. Smac was shown previously to inhibit IAP proteins and to facilitate initiation of the caspase cascade upon cytochrome c release. To investigate Smac function during apoptosis and to explore Smac as an experimental cancer therapeutic, we constructed an expression system based on a single adenoviral vector containing Smac under control of the Tet-off system supplied in cis. Conditional expression of Smac induced apoptosis in human HCT116 and DU145 carcinoma cells regardless of the loss of Bax or overexpression of Bcl-xL. Nevertheless, apoptosis induced by Smac was associated with cytochrome c release and breakdown of the mitochondrial membrane potential. This indicates that Smac acts independently of Bax and Bcl-xL during initiation of apoptosis and triggers a positive feedback loop that results in Bax/Bcl-xL-independent activation of mitochondria. In caspase-proficient cells, Smac-induced apoptosis could be inhibited partially by cell-permeable LEHD (caspase-9 inhibitor) and DEVD (caspase-3 inhibitor) peptides. Furthermore, loss of caspase-3 expression in MCF-7 cells carrying a caspase-3 null mutation completely abrogated the sensitivity for Smac-induced apoptotic or nonapoptotic, necrosis-like cell death, while re-expression of caspase-3 conferred sensitivity. Altogether, caspase-3 but not caspase-9 activation was necessary for execution of Smac-induced cell death. Notably, Smac did not induce caspase-9 processing in the absence of caspase-3. Thus, caspase-9 processing occurs secondary to caspase-3 activation during Smac-induced apoptosis. Altogether, Smac is capable of circumventing defects in mitochondrial apoptosis signaling such as loss of Bax or overexpression of Bcl-xL that are frequently observed in tumor cells resistant to anticancer therapy. Consequently, Smac appears to be a promising therapeutic target in anticancer treatment

    Systematic genetic dissection of p14(ARF)-mediated mitochondrial cell death signaling reveals a key role for p21(CDKN1) and the BH3-only protein Puma/bbc3

    No full text
    Induction of cell death by p14(ARF) is mediated through a Bax/Bak-dependent mitochondrial apoptosis pathway. To investigate the upstream signaling events required for the activation of Bax and/or Bak and to determine the functional impact of de-regulated cell cycle restriction point control in this context, we genetically dissected the impact of BH3-only proteins and the role of the cyclin-dependent kinase (cdk) inhibitor p21(CDKN1). Using isogenic HCT116 colorectal cancer cells, either wild-type or homozygously deleted for the BH3-only protein Puma/bbc3 and/or p21(CDKN1) or p53-reconstituted DU145 prostate cancer cells, we show that p14(ARF)-induced apoptosis is attenuated in the absence of Puma. Upon expression of p14(ARF) in HCT116 cells, Puma is rapidly induced at both the mRNA and protein level. Puma-proficient HCT116 cells undergo apoptotic (nuclear) DNA fragmentation, which is preceded by the N-terminal conformational change of Bax, the breakdown of the mitochondrial membrane potential, and induction of caspase-9 (LEHD)-like and caspase-3/7 (DEVD)-like activities. In contrast, p14(ARF)-induced apoptosis is markedly attenuated in isogenic HCT116 cells bi-allelically deleted for puma. The sensitivity of Puma-deficient cells to p14(ARF)-induced apoptosis is fully restored by functional reconstitution of Puma using a conditional adenoviral expression vector. Notably, the concomitant deletion of p21(CDKN1) strongly enhances p14(ARF)-induced apoptosis in Puma-proficient cells, but not in isogenic Puma-deficient cells. These results indicate that p14(ARF)-induced mitochondrial apoptosis critically depends on the BH3-only protein Puma. In the presence of a functional p53/Puma/Bax-signaling axis, p14(ARF)-triggered apoptosis is enhanced by loss of p21(CDKN1)-mediated cell cycle checkpoint control
    corecore