309 research outputs found

    Critical slowing down near the multiferroic phase transition in MnWO4_4

    Full text link
    By using broadband dielectric spectroscopy in the radiofrequency and microwave range we studied the magnetoelectric dynamics in the multiferroic chiral antiferromagnet MnWO4_4. Above the multiferroic phase transition at TN2≈12.6T_{N2} \approx 12.6 K we observe a critical slowing down of the corresponding magnetoelectric fluctuations resembling the soft-mode behavior in canonical ferroelectrics. This electric field driven excitation carries much less spectral weight than ordinary phonon modes. Also the critical slowing down of this mode scales with an exponent larger than one which is expected for magnetic second order phase transition scenarios. Therefore the investigated dynamics have to be interpreted as the softening of an electrically active magnetic excitation, an electromagnon.Comment: 5 pages, 4 figures, appendi

    Electron-phonon and spin-phonon coupling in NaV2_{2}O5_{5}: charge fluctuations effect

    Get PDF
    We show that the asymmetric crystal environment of the V site in the ladder compound NaV2_{2}O5_{5} leads to a strong coupling of vanadium 3d electrons to phonons. This coupling causes fluctuations of the charge on the V ions, and favors a transition to a charge-ordered state at low temperatures. In the low temperature phase the charge fluctuations modulate the spin-spin superexchange interaction, resulting in a strong spin-phonon coupling.Comment: Europhysics Letters, to be publishe

    Spin-driven Phonon Splitting in Bond-frustrated ZnCr2S4

    Get PDF
    Utilizing magnetic susceptibility, specific heat, thermal expansion and IR spectroscopy we provide experimental evidence that the two subsequent antiferromagnetic transitions in ZnCr_2S_4 at T_N1 = 15 K and T_N2= 8 K are accompanied by significant thermal and phonon anomalies. The anomaly at T_N2 reveals a strong temperature hysteresis typical for a first-order transformation. Due to strong spin-phonon coupling both magnetic phase transitions induce a splitting of phonon modes, where at T_N1 the high-frequency and at T_N2 the low-frequency modes split. The anomalies and phonon splitting observed at T_N2 are strongly suppressed by magnetic field. Regarding the small positive Curie-Weiss temperature Theta= 8 K, we argue that this scenario of two different magnetic phases with concomitant different magneto-elastic couplings results from the strong competition of ferromagnetic and antiferromagnetic exchange of equal strength.Comment: 4 pages, 4 figure

    Spin and orbital frustration in MnSc_2S_4 and FeSc_2S_4

    Full text link
    Crystal structure, magnetic susceptibility, and specific heat were measured in the normal cubic spinel compounds MnSc_2S_4 and FeSc_2S_4. Down to the lowest temperatures, both compounds remain cubic and reveal strong magnetic frustration. Specifically the Fe compound is characterized by a Curie-Weiss temperature \Theta_{CW}= -45 K and does not show any indications of order down to 50 mK. In addition, the Jahn-Teller ion Fe^{2+} is orbitally frustrated. Hence, FeSc_2S_4 belongs to the rare class of spin-orbital liquids. MnSc_2S_4 is a spin liquid for temperatures T > T_N \approx 2 K.Comment: 4 pages, to be published in Physical Review Letter

    A Model Study of the Low-Energy Charge Dynamics of NaV_2O_5

    Full text link
    An exact-diagonalization technique on small clusters is used to calculate the dynamical density correlation functions of the dimerized t-J chain and coupled anisotropic t-J ladders (trellis lattice) at quarter filling, i.e., the systems regarded as a network of pairs (dimers or rungs) of sites coupled weakly via the hopping and exchange interactions. We thereby demonstrate that the intersite Coulomb repulsions between the pairs induce a low-energy collective mode in the charge excitations of the systems where the internal charge degrees of freedom of the pairs play an essential role. Implications to the electronic states of NaV_2O_5, i.e., fluctuations of the valence state of V ions and phase transition as a charge ordering, are discussed.Comment: 4 pages, 4 gif figures. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to [email protected]

    Evidence for local lattice distortions in giant magnetocapacitive CdCr2S4

    Full text link
    Raman scattering experiments on CdCr2S4 single crystals show pronounced anomalies in intensity and frequency of optical phonon modes with an onset temperature T*=130 K that coincides with the regime of giant magnetocapacitive effects. A loss of inversion symmetry and Cr off-centering are deduced from the observation of longitudinal optical and formerly infrared active modes for T<T_c=84 K. The intensity anomalies are attributed to the enhanced electronic polarizability of displacements that modulate the Cr-S distance and respective hybridization. Photo doping leads to an annihilation of the symmetry reduction. Our scenario of multiferroic effects is based on the near degeneracy of polar and nonpolar modes and the additional low energy scale due to hybridization.Comment: 4 pages, 6 figure

    Periastron Advance in Spinning Black Hole Binaries: Gravitational Self-Force from Numerical Relativity

    Get PDF
    We study the general relativistic periastron advance in spinning black hole binaries on quasi-circular orbits, with spins aligned or anti-aligned with the orbital angular momentum, using numerical-relativity simulations, the post-Newtonian approximation, and black hole perturbation theory. By imposing a symmetry by exchange of the bodies' labels, we devise an improved version of the perturbative result, and use it as the leading term of a new type of expansion in powers of the symmetric mass ratio. This allows us to measure, for the first time, the gravitational self-force effect on the periastron advance of a non-spinning particle orbiting a Kerr black hole of mass M and spin S = -0.5 M^2, down to separations of order 9M. Comparing the predictions of our improved perturbative expansion with the exact results from numerical simulations of equal-mass and equal-spin binaries, we find a remarkable agreement over a wide range of spins and orbital separations.Comment: 18 pages, 12 figures; matches version to appear in Phys. Rev.

    Charge Order Driven spin-Peierls Transition in NaV2O5

    Full text link
    We conclude from 23Na and 51V NMR measurements in NaxV2O5(x=0.996) a charge ordering transition starting at T=37 K and preceding the lattice distortion and the formation of a spin gap Delta=106 K at Tc=34.7 K. Above Tc, only a single Na site is observed in agreement with the Pmmn space group of this first 1/4-filled ladder system. Below Tc=34.7 K, this line evolves into eight distinct 23Na quadrupolar split lines, which evidences a lattice distortion with, at least, a doubling of the unit cell in the (a,b) plane. A model for this unique transition implying both charge density wave and spin-Peierls order is discussed.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    The Effect of ff-dd Magnetic Coupling in Multiferroic RRMnO3_3 Crystals

    Full text link
    We have established detailed magnetoelectric phase diagrams of (Eu0.595_{0.595}Y0.405_{0.405})1−x_{1-x}Tbx_xMnO3_3 (0≤x≤10 \le x \le 1) and (Eu,Y)1−x_{1-x}Gdx_xMnO3_3 (0≤x≤0.690 \le x \le 0.69), whose average ionic radii of RR-site (RR: rare earth) cations are equal to that of Tb3+^{3+}, in order to reveal the effect of rare earth 4ff magnetic moments on the magnetoelectric properties. In spite of the same RR-site ionic radii, the magnetoelectric properties of the two systems are remarkably different from each other. A small amount of Tb substitution on RR sites (x∼0.2x \sim 0.2) totally destroys ferroelectric polarization along the a axis (PaP_a), and an increase in Tb concentration stabilizes the PcP_c phase. On the other hand, Gd substitution (x∼0.2x \sim 0.2) extinguishes the PcP_c phase, and slightly suppresses the PaP_a phase. These results demonstrate that the magnetoelectric properties of RRMnO3_3 strongly depend on the characteristics of the rare earth 4ff moments.Comment: 10 pages, 5 figures Submitted to Journal of the Physical Society of Japa
    • …
    corecore