18 research outputs found

    The first total synthesis of (±)-herbertenones A and B

    No full text
    The first total synthesis of (±)-herbertenones A and B, employing Claisen rearrangement-metathesis reaction based approaches, is described

    The First Total Synthesis of (±\pm)-Herbertenones A and B

    No full text
    The first total synthesis of (±\pm)-herbertenones A and B, employing Claisen rearrangement-metathesis reaction based approaches, is describe

    A Domino Approach of Heck Coupling for the Synthesis of β-Trifluoromethylstyrenes

    No full text
    A domino approach of Heck coupling was used to synthesize β-trifluoromethylstyrene derivatives from iodoarenes and 1-iodo-3,3,3-trifluoropropane in moderate to good yields. This method avoids the use of low-boiling, gaseous reagents such as 3,3,3-trifluoropropene, and additives and phosphines in the catalytic system

    Preclinical PET Neuroimaging of [ 11

    No full text
    Activation of retinoid X receptors (RXRs) has been proposed as a therapeutic mechanism for the treatment of neurodegeneration, including Alzheimer's and Parkinson's diseases. We previously reported radiolabeling of a Food and Drug Administration-approved RXR agonist, bexarotene, by copper-mediated [ 11 C]CO 2 fixation and preliminary positron emission tomography (PET) neuroimaging that demonstrated brain permeability in nonhuman primate with regional binding distribution consistent with RXRs. In this study, the brain uptake and saturability of [ 11 C]bexarotene were studied in rats and nonhuman primates by PET imaging under baseline and greater target occupancy conditions. [ 11 C]Bexarotene displays a high proportion of nonsaturable uptake in the brain and is unsuitable for RXR occupancy measurements in the central nervous system

    Preclinical PET Neuroimaging of [C]Bexarotene

    No full text
    Activation of retinoid X receptors (RXRs) has been proposed as a therapeutic mechanism for the treatment of neurodegeneration, including Alzheimer's and Parkinson's diseases. We previously reported radiolabeling of a Food and Drug Administration-approved RXR agonist, bexarotene, by copper-mediated [ 11 C]CO 2 fixation and preliminary positron emission tomography (PET) neuroimaging that demonstrated brain permeability in nonhuman primate with regional binding distribution consistent with RXRs. In this study, the brain uptake and saturability of [ 11 C]bexarotene were studied in rats and nonhuman primates by PET imaging under baseline and greater target occupancy conditions. [ 11 C]Bexarotene displays a high proportion of nonsaturable uptake in the brain and is unsuitable for RXR occupancy measurements in the central nervous system

    Radiocaine: An Imaging Marker of Neuropathic Injury

    No full text
    Voltage-gated sodium channels (Navs) play a crucial electrical signaling role in neurons. Nav-isoforms present in peripheral sensory neurons and dorsal root ganglia of the spinal cord are critically involved in pain perception and transmission. While these isoforms, particularly Nav1.7, are implicated in neuropathic pain disorders, changes in the functional state and expression levels of these channels have not been extensively studied in vivo. Radiocaine, a fluorine-18 radiotracer based on the local anesthetic lidocaine, a non-selective Nav blocker, has previously been used for cardiac Nav1.5 imaging using positron-emission tomography (PET). In the present study, we used Radiocaine to visualize changes in neuronal Nav expression after neuropathic injury. In rats that underwent unilateral spinal nerve ligation, PET/MR imaging demonstrated significantly higher uptake of Radiocaine into the injured sciatic nerve, as compared to the uninjured sciatic nerve, for up to 32 days post-surgery. Radiocaine, due to its high translational potential, may serve as a novel diagnostic tool for neuropathic pain conditions using PET imaging
    corecore