7 research outputs found

    Thrombin generation assays for global evaluation of the hemostatic system: perspectives and limitations

    No full text
    Abstract The existing techniques to evaluate hemostasis in clinical laboratories are not sensitive enough to detect hypercoagulable and mild hypocoagulable states. Under different experimental conditions, the thrombin generation test may meet these requirements. This technique evaluates the overall balance between procoagulant and anticoagulant forces and has provided new insights in our understanding of the coagulation cascade, as well as of the diagnosis of hypocoagulability and hypercoagulability conditions. Thrombin generated in the thrombin generation test can be quantified as platelet-rich or platelet-poor plasma using the calibrated automated thrombogram method, which monitors the cleavage of a fluorogenic substrate that is simultaneously compared to the known thrombin activity in a non-clotting plasma sample. The calibrated automated thrombogram method is an open system, in which different antibodies, proteins, enzymes and peptides can be introduced to answer specific questions regarding hemostatic processes. The thrombin generation test has great clinical potential, such as in monitoring patients taking anticoagulants and antiplatelet drugs, screening for genetic or acquired thrombotic disorders, and evaluating bleeding risk control in patients with hemophilia using bypass agents or replacement therapy. Different to conventional coagulation tests, the thrombin generation test can be used for an overall evaluation of hemostasis, the results of which can then be used to evaluate specific characteristics of hemostasis, such as prothrombin time, activated partial thromboplastin time, and levels of fibrinogen and other coagulation factors. The introduction of this method will contribute to a better understanding and evaluation of overall hemostatic processes; however, this method still requires standardization and clinical validation

    Behavioral investigation of mice with experimental autoimmune encephalomyelitis

    No full text
    Multiple sclerosis is a neuroinflammatory disease that results in serious neurological disability. Besides physical impairment, behavioral symptoms are also common in patients with multiple sclerosis. Experimental autoimmune encephalomyelitis (EAE) is considered to be a model of multiple sclerosis and mimics the main features of the disease, such as demyelination and motor impairment. In this work, we aimed to study behavioral parameters in animals with EAE using the MOG35-55 model in C57BL/6 mice. We analyzed memory and anxiety in animals using the elevated plus maze, the step down inhibitory avoidance task and the memory recognition test. No differences in any tests were found when comparing controls and animals induced with EAE. Therefore, we conclude that behavioral changes in animals with EAE induced with MOG35-55 are probably subtle or absent

    NĂşcleos de Ensino da Unesp: artigos 2007

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore