28 research outputs found

    A high-resolution pointing system for fast scanning platforms: The EBEX example

    Full text link
    The E and B experiment (EBEX) is a balloon-borne telescope designed to measure the polarization of the cosmic microwave background with 8' resolution employing a gondola scanning with speeds of order degree per second. In January 2013, EBEX completed 11 days of observations in a flight over Antarctica covering ∼\sim 6000 square degrees of the sky. The payload is equipped with two redundant star cameras and two sets of three orthogonal gyroscopes to reconstruct the telescope attitude. The EBEX science goals require the pointing to be reconstructed to approximately 10" in the map domain, and in-flight attitude control requires the real time pointing to be accurate to ∼\sim 0.5∘^{\circ} . The high velocity scan strategy of EBEX coupled to its float altitude only permits the star cameras to take images at scan turnarounds, every ∼\sim 40 seconds, and thus requires the development of a pointing system with low noise gyroscopes and carefully controlled systematic errors. Here we report on the design of the pointing system and on a simulation pipeline developed to understand and minimize the effects of systematic errors. The performance of the system is evaluated using the 2012/2013 flight data, and we show that we achieve a pointing error with RMS=25" on 40 seconds azimuth throws, corresponding to an error of ∼\sim 4.6" in the map domain.Comment: 14 pages, Proceedings of the 2015 IEEE Aerospace Conferenc

    Modeling and characterization of the SPIDER half-wave plate

    Get PDF
    Spider is a balloon-borne array of six telescopes that will observe the Cosmic Microwave Background. The 2624 antenna-coupled bolometers in the instrument will make a polarization map of the CMB with approximately one-half degree resolution at 145 GHz. Polarization modulation is achieved via a cryogenic sapphire half-wave plate (HWP) skyward of the primary optic. We have measured millimeter-wave transmission spectra of the sapphire at room and cryogenic temperatures. The spectra are consistent with our physical optics model, and the data gives excellent measurements of the indices of A-cut sapphire. We have also taken preliminary spectra of the integrated HWP, optical system, and detectors in the prototype Spider receiver. We calculate the variation in response of the HWP between observing the CMB and foreground spectra, and estimate that it should not limit the Spider constraints on inflation

    On-sky performance of new 90 GHz detectors for the Cosmology Large Angular Scale Surveyor (CLASS)

    Full text link
    The Cosmology Large Angular Scale Surveyor (CLASS) is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert and designed to measure the polarized Cosmic Microwave Background (CMB) over large angular scales. The CLASS array is currently observing with three telescopes covering four frequency bands: one at 40 GHz (Q); one at 90 GHz (W1); and one dichroic system at 150/220 GHz (HF). During the austral winter of 2022, we upgraded the first 90 GHz telescope (W1) by replacing four of the seven focal plane modules. These new modules contain detector wafers with an updated design, aimed at improving the optical efficiency and detector stability. We present a description of the design changes and measurements of on-sky optical efficiencies derived from observations of Jupiter.Comment: 5 pages, 3 figures, to appear in the IEEE Transactions on Applied Superconductivity. arXiv admin note: text overlap with arXiv:2208.0500

    The Cosmology Large Angular Scale Surveyor Receiver Design

    Full text link
    The Cosmology Large Angular Scale Surveyor consists of four instruments performing a CMB polarization survey. Currently, the 40 GHz and first 90 GHz instruments are deployed and observing, with the second 90 GHz and a multichroic 150/220 GHz instrument to follow. The receiver is a central component of each instrument's design and functionality. This paper describes the CLASS receiver design, using the first 90 GHz receiver as a primary reference. Cryogenic cooling and filters maintain a cold, low-noise environment for the detectors. We have achieved receiver detector temperatures below 50 mK in the 40 GHz instrument for 85% of the initial 1.5 years of operation, and observed in-band efficiency that is consistent with pre-deployment estimates. At 90 GHz, less than 26% of in-band power is lost to the filters and lenses in the receiver, allowing for high optical efficiency. We discuss the mounting scheme for the filters and lenses, the alignment of the cold optics and detectors, stray light control, and magnetic shielding.Comment: Fixed formatting of abstract; 20 Pages, 11 Figures, SPIE Conference Proceeding
    corecore