7 research outputs found

    MAP3K8 in humans is associated with higher BMI and cytokine expression.

    No full text
    <p>MAP3K8 mRNA expression in human subcutaneous adipose tissue, associated with (a) BMI, (b) plasma insulin values, (c) plasma glucose levels, (d) HOMA-IR, (e) adipocyte sell size cell size and (f) crown-like structures. *p<0.05. n = 51, 50, 71, 70 respectively. HOMA-IR  =  Homeostatic Model Assessment for insulin resistance.</p

    MAP3K8 in humans is associated with IL-1β, IL-6 and IL-8 cytokine expression.

    No full text
    <p>Biopsies from subcutaneous adipose tissue were obtained from healthy subjects with varying levels of obesity. Association of MAP3K8 mRNA expression in human subcutaneous adipose tissue with mRNA expression of (a) IL-1ß, (b) IL-6, (c) IL-8, (d) TNF-α, (e) serum amyloid A levels (SAA: Q1≤0.7 mg/L, Q4≥1.6 mg/L), (f) C-reactive protein (CRP: Q1≤0.5 mg/L, Q4≥2.0 mg/L). *p<0.05, **p<0.01.</p

    MAP3K8-ko mice display similar bodyweight and insulin sensitivity compared to WT mice.

    No full text
    <p>MAP3K8-ko and WT mice were fed a LFD or HFD during 16 weeks. (a) Plasma insulin and (b) plasma glucose levels after diet intervention. Insulin (itt) and oral glucose (ogtt) tolerance tests after 16 weeks of diet intervention. (c) itt after 16 weeks of HFD and (d) area under the curve itt. (e) ogtt after 16 weeks of HFD and (f) area under the curve of ogtt. n = 9 mice per group. * p<0.05, ** p<0.01, *** p<0.001.</p

    Obesity and macrophage influx in adipose tissue of HFD-fed WT and MAP3K8-ko animals.

    No full text
    <p>MAP3K8-ko and WT mice were fed a LFD or HFD during 16 weeks. (a) Bodyweight development upon LFD or HFD feeding. (b) Epididymal white adipose tissue (eWAT) weight after 16 weeks of LFD or HFD. (c) Liver weight after 16 weeks of LFD or HFD. (d) Plasma CXCL1 levels after 16 weeks of LFD or HFD (e) Macrophage influx into the adipose tissue as determined by immunohistochemistry, F4/80 (serotec) staining: 20× magnification or 40× as indicated: (f) Number of crown-like structures per field. (g–i) qPCR analysis for macrophage infiltration markers, (g) CD68, (h) F4/80, (i) MCP-1 in adipose tissue of MAP3K8-ko and WT animals. * p<0.05, ** p<0.01, *** p<0.001.</p

    Inflammatory profile of the adipose tissue of HFD-fed WT and MAP3K8-ko animals.

    No full text
    <p>MAP3K8-ko and WT mice were fed a LFD or HFD during 16 weeks. (a–f) qPCR analysis for cytokines (a) TNF-α, (b) IFNγ, (c) IL-1β, (d) CXCL-1, (e) IL-6 and (f) IL-1Ra. n = 9 mice per group. Relative phosphorylation of NFκB p65 (g) and ERK 1/2 (h) in eWAT of MAP3K8-ko and WT animals after HFD-feeding (i). * p<0.05, ** p<0.01, *** p<0.001.</p

    Discovery of Imidazoquinolines as a Novel Class of Potent, Selective, and in Vivo Efficacious Cancer Osaka Thyroid (COT) Kinase Inhibitors

    No full text
    Cancer Osaka thyroid (COT) kinase is an important regulator of pro-inflammatory cytokines in macrophages. Thus, pharmacologic inhibition of COT should be a valid approach to therapeutically intervene in the pathogenesis of macrophage-driven inflammatory diseases such as rheumatoid arthritis. We report the discovery and chemical optimization of a novel series of COT kinase inhibitors, with unprecedented nanomolar potency for the inhibition of TNFα. Pharmacological profiling in vivo revealed a high metabolism of these compounds in rats which was demonstrated to be predominantly attributed to aldehyde oxidase. Due to the very low activity of hepatic AO in the dog, the selected candidate <b>32</b> displayed significant blood exposure in dogs which resulted in a clear prevention of inflammation-driven lameness. Taken together, the described compounds both potently and selectively inhibit COT kinase in primary human cells and ameliorate inflammatory pathologies in vivo, supporting the notion that COT is an appropriate therapeutic target for inflammatory diseases

    Discovery of Imidazoquinolines as a Novel Class of Potent, Selective, and in Vivo Efficacious Cancer Osaka Thyroid (COT) Kinase Inhibitors

    No full text
    Cancer Osaka thyroid (COT) kinase is an important regulator of pro-inflammatory cytokines in macrophages. Thus, pharmacologic inhibition of COT should be a valid approach to therapeutically intervene in the pathogenesis of macrophage-driven inflammatory diseases such as rheumatoid arthritis. We report the discovery and chemical optimization of a novel series of COT kinase inhibitors, with unprecedented nanomolar potency for the inhibition of TNFα. Pharmacological profiling in vivo revealed a high metabolism of these compounds in rats which was demonstrated to be predominantly attributed to aldehyde oxidase. Due to the very low activity of hepatic AO in the dog, the selected candidate <b>32</b> displayed significant blood exposure in dogs which resulted in a clear prevention of inflammation-driven lameness. Taken together, the described compounds both potently and selectively inhibit COT kinase in primary human cells and ameliorate inflammatory pathologies in vivo, supporting the notion that COT is an appropriate therapeutic target for inflammatory diseases
    corecore