255 research outputs found

    Sleep-Dependent Facilitation of Episodic Memory Details

    Get PDF
    While a role for sleep in declarative memory processing is established, the qualitative nature of this consolidation benefit, and the physiological mechanisms mediating it, remain debated. Here, we investigate the impact of sleep physiology on characteristics of episodic memory using an item- (memory elements) and context- (contextual details associated with those elements) learning paradigm; the latter being especially dependent on the hippocampus. Following back-to-back encoding of two word lists, each associated with a different context, participants were assigned to either a Nap-group, who obtained a 120-min nap, or a No Nap-group. Six hours post-encoding, participants performed a recognition test involving item-memory and context-memory judgments. In contrast to item-memory, which demonstrated no between-group differences, a significant benefit in context-memory developed in the Nap-group, the extent of which correlated both with the amount of stage-2 NREM sleep and frontal fast sleep-spindles. Furthermore, a difference was observed on the basis of word-list order, with the sleep benefit and associated physiological correlations being selective for the second word-list, learned last (most proximal to sleep). These findings suggest that sleep may preferentially benefit contextual (hippocampal-dependent) aspects of memory, supported by sleep-spindle oscillations, and that the temporal order of initial learning differentially determines subsequent offline consolidation

    SUST 489 Capstone: Library of Things Project

    Get PDF
    Each year, the Sustainability 489 Capstone class works with a community partner whose needs align with the initiatives of the Department of Sustainability. This year, the SUST 489 class received a recommendation from Dr. Joe Kantenbacher to work with the Vermilion Public Library. Our class worked with Daniel Burniston, Vermillion Public Library Director, to best identify the needs of the Vermillion community. The class, our library partners, and our professor Dr. Meghann Jarchow worked together to decide upon a Library of Things project, where we will assist the library in providing items for library patrons to check out.https://red.library.usd.edu/sustainability-projects/1009/thumbnail.jp

    RNA-Seq analysis implicates dysregulation of the immune system in schizophrenia

    Get PDF
    Background While genome-wide association studies identified some promising candidates for schizophrenia, the majority of risk genes remained unknown. We were interested in testing whether integration gene expression and other functional information could facilitate the identification of susceptibility genes and related biological pathways. Results We conducted high throughput sequencing analyses to evaluate mRNA expression in blood samples isolated from 3 schizophrenia patients and 3 healthy controls. We also conducted pooled sequencing of 10 schizophrenic patients and matched controls. Differentially expressed genes were identified by t-test. In the individually sequenced dataset, we identified 198 genes differentially expressed between cases and controls, of them 19 had been verified by the pooled sequencing dataset and 21 reached nominal significance in gene-based association analyses of a genome wide association dataset. Pathway analysis of these differentially expressed genes revealed that they were highly enriched in the immune related pathways. Two genes, S100A8 and TYROBP, had consistent changes in expression in both individual and pooled sequencing datasets and were nominally significant in gene-based association analysis. Conclusions Integration of gene expression and pathway analyses with genome-wide association may be an efficient approach to identify risk genes for schizophrenia

    Evaluating the Need for Preoperative MRI Before Primary Hip Arthroscopy in Patients 40 Years and Younger With Femoroacetabular Impingement Syndrome: A Multicenter Comparative Analysis

    Get PDF
    BACKGROUND: Routine hip magnetic resonance imaging (MRI) before arthroscopy for patients with femoroacetabular impingement syndrome (FAIS) offers questionable clinical benefit, delays surgery, and wastes resources. PURPOSE: To assess the clinical utility of preoperative hip MRI for patients aged ≤40 years who were undergoing primary hip arthroscopy and who had a history, physical examination findings, and radiographs concordant with FAIS. STUDY DESIGN: Cohort study; Level of evidence, 3. METHODS: Included were 1391 patients (mean age, 25.8 years; 63% female; mean body mass index, 25.6) who underwent hip arthroscopy between August 2015 and December 2021 by 1 of 4 fellowship-trained hip surgeons from 4 referral centers. Inclusion criteria were FAIS, primary surgery, and age ≤40 years. Exclusion criteria were MRI contraindication, reattempt of nonoperative management, and concomitant periacetabular osteotomy. Patients were stratified into those who were evaluated with preoperative MRI versus those without MRI. Those without MRI received an MRI before surgery without deviation from the established surgical plan. All preoperative MRI scans were compared with the office evaluation and intraoperative findings to assess agreement. Time from office to arthroscopy and/or MRI was recorded. MRI costs were calculated. RESULTS: Of the study patients, 322 were not evaluated with MRI and 1069 were. MRI did not alter surgical or interoperative plans. Both groups had MRI findings demonstrating anterosuperior labral tears treated intraoperatively (99.8% repair, 0.2% debridement, and 0% reconstruction). Compared with patients who were evaluated with MRI and waited 63.0 ± 34.6 days, patients who were not evaluated with MRI underwent surgery 6.5 ± 18.7 days after preoperative MRI. MRI delayed surgery by 24.0 ± 5.3 days and cost a mean $2262 per patient. CONCLUSION: Preoperative MRI did not alter indications for primary hip arthroscopy in patients aged ≤40 years with a history, physical examination findings, and radiographs concordant with FAIS. Rather, MRI delayed surgery and wasted resources. Routine hip MRI acquisition for the younger population with primary FAIS with a typical presentation should be challenged

    Engineering a Decoy Substrate in Soybean to Enable Recognition of the Soybean Mosaic Virus NIa Protease

    Get PDF
    In Arabidopsis, recognition of the AvrPphB effector protease from Pseudomonas syringae is mediated by the disease resistance (R) protein RPS5, which is activated by AvrPphB-induced cleavage of the Arabidopsis protein kinase PBS1. The recognition specificity of RPS5 can be altered by substituting the AvrPphB cleavage site within PBS1 with cleavage sequences for other proteases, including proteases from viruses. AvrPphB also activates defense responses in soybean (Glycine max), suggesting that soybean may contain an R protein analogous to RPS5. It was unknown, however, whether this response is mediated by cleavage of a soybean PBS1-like protein. Here, we show that soybean contains three PBS1 orthologs and that their products are cleaved by AvrPphB. Further, transient expression of soybean PBS1 derivatives containing a five-alanine insertion at their AvrPphB cleavage sites activated cell death in soybean protoplasts, demonstrating that soybean likely contains an AvrPphB-specific resistance protein that is activated by a conformational change in soybean PBS1 proteins. Significantly, we show that a soybean PBS1 decoy protein modified to contain a cleavage site for the soybean mosaic virus (SMV) NIa protease triggers cell death in soybean protoplasts when cleaved by this protease, indicating that the PBS1 decoy approach will work in soybean, using endogenous PBS1 genes. Lastly, we show that activation of the AvrPphB-dependent cell death response effectively inhibits systemic spread of SMV in soybean. These data also indicate that decoy engineering may be feasible in other crop plant species that recognize AvrPphB protease activity

    Ancient crops provide first archaeological signature of the westward Austronesian expansion.

    Get PDF
    The Austronesian settlement of the remote island of Madagascar remains one of the great puzzles of Indo-Pacific prehistory. Although linguistic, ethnographic, and genetic evidence points clearly to a colonization of Madagascar by Austronesian language-speaking people from Island Southeast Asia, decades of archaeological research have failed to locate evidence for a Southeast Asian signature in the island's early material record. Here, we present new archaeobotanical data that show that Southeast Asian settlers brought Asian crops with them when they settled in Africa. These crops provide the first, to our knowledge, reliable archaeological window into the Southeast Asian colonization of Madagascar. They additionally suggest that initial Southeast Asian settlement in Africa was not limited to Madagascar, but also extended to the Comoros. Archaeobotanical data may support a model of indirect Austronesian colonization of Madagascar from the Comoros and/or elsewhere in eastern Africa

    Infection of neonatal mice with the murine norovirus strain WU23 is a robust model to study norovirus pathogenesis

    Get PDF
    Noroviruses are the leading cause of severe childhood diarrhea and foodborne disease worldwide. While they are a major cause of disease in all age groups, infections in the very young can be quite severe, with annual estimates of 50,000-200,000 fatalities in children under 5 years old. In spite of the remarkable disease burden associated with norovirus infections, very little is known about the pathogenic mechanisms underlying norovirus diarrhea, principally because of the lack of tractable small animal models. The development of the murine norovirus (MNV) model nearly two decades ago has facilitated progress in understanding host-norovirus interactions and norovirus strain variability. However, MNV strains tested thus far either do not cause intestinal disease or were isolated from extraintestinal tissue, raising concerns about translatability of research findings to human norovirus disease. Consequently, the field lacks a strong model of norovirus gastroenteritis. Here we provide a comprehensive characterization of a new small animal model system for the norovirus field that overcomes prior weaknesses. Specifically, we demonstrate that the WU23 MNV strain isolated from a mouse naturally presenting with diarrhea causes a transient reduction in weight gain and acute self-resolving diarrhea in neonatal mice of several inbred mouse lines. Moreover, our findings reveal that norovirus-induced diarrhea is associated with infection of subepithelial cells in the small intestine and systemic spread. Finally, type I interferons (IFNs) are critical to protect hosts from norovirus-induced intestinal disease whereas type III IFNs exacerbate diarrhea. This latter finding is consistent with other emerging data implicating type III IFNs in the exacerbation of some viral diseases. This new model system should enable a detailed investigation of norovirus disease mechanisms
    corecore