15 research outputs found

    Single-molecule live-cell imaging reveals RecB-dependent function of DNA polymerase IV in double strand break repair

    Get PDF
    © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. Several functions have been proposed for the Escherichia coli DNA polymerase IV (pol IV). Although much research has focused on a potential role for pol IV in assisting pol III replisomes in the bypass of lesions, pol IV is rarely found at the replication fork in vivo. Pol IV is expressed at increased levels in E. coli cells exposed to exogenous DNA damaging agents, including many commonly used antibiotics. Here we present live-cell single-molecule microscopy measurements indicating that double-strand breaks induced by antibiotics strongly stimulate pol IV activity. Exposure to the antibiotics ciprofloxacin and trimethoprim leads to the formation of double strand breaks in E. coli cells. RecA and pol IV foci increase after treatment and exhibit strong colocalization. The induction of the SOS response, the appearance of RecA foci, the appearance of pol IV foci and RecA-pol IV colocalization are all dependent on RecB function. The positioning of pol IV foci likely reflects a physical interaction with the RecA* nucleoprotein filaments that has been detected previously in vitro. Our observations provide an in vivo substantiation of a direct role for pol IV in double strand break repair in cells treated with double strand break-inducing antibiotics

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Cyclic di-AMP traps proton-coupled K+ transporters of the KUP family in an inward-occluded conformation

    Get PDF
    Abstract Cyclic di-AMP is the only known essential second messenger in bacteria and archaea, regulating different proteins indispensable for numerous physiological processes. In particular, it controls various potassium and osmolyte transporters involved in osmoregulation. In Bacillus subtilis, the K+/H+ symporter KimA of the KUP family is inactivated by c-di-AMP. KimA sustains survival at potassium limitation at low external pH by mediating potassium ion uptake. However, at elevated intracellular K+ concentrations, further K+ accumulation would be toxic. In this study, we reveal the molecular basis of how c-di-AMP binding inhibits KimA. We report cryo-EM structures of KimA with bound c-di-AMP in detergent solution and reconstituted in amphipols. By combining structural data with functional assays and molecular dynamics simulations we reveal how c-di-AMP modulates transport. We show that an intracellular loop in the transmembrane domain interacts with c-di-AMP bound to the adjacent cytosolic domain. This reduces the mobility of transmembrane helices at the cytosolic side of the K+ binding site and therefore traps KimA in an inward-occluded conformation

    Cyclic di-AMP traps proton-coupled K+ transporters of the KUP family in an inward-occluded conformation

    No full text
    Cyclic di-AMP is the only known essential second messenger in bacteria and archaea, regulating different proteins indispensable for numerous physiological processes. In particular, it controls various potassium and osmolyte transporters involved in osmoregulation. In Bacillus subtilis, the K+/H+ symporter KimA of the KUP family is inactivated by c-di-AMP. KimA sustains survival at potassium limitation at low external pH by mediating K+ ions uptake. However, at elevated intracellular K+ concentrations, further K+ accumulation would be toxic. In this study, we reveal the molecular basis of how c-di-AMP binding inhibits KimA. We report cryo-EM structures of KimA with bound c-di-AMP in detergent solution and reconstituted in amphipols. By combining structural data with functional assays and molecular dynamics simulations we reveal how c-di-AMP modulates transport. We show that an intracellular loop in the transmembrane domain interacts with c-di-AMP bound to the adjacent cytosolic domain. This reduces the mobility of transmembrane helices at the cytosolic side of the K+ binding site and therefore traps KimA in an inward-occluded conformation

    Native mass spectrometry goes more native:Investigation of membrane protein complexes directly from SMALPs

    Get PDF
    Other than more widely used methods, the use of styrene maleic acid allows the direct extraction of membrane proteins from the lipid bilayer into SMALPs keeping it in its native lipid surrounding. Here we present the combined use of SMALPs and LILBID-MS, allowing determination of oligomeric states of membrane proteins of different functionality directly from the native nanodiscs.</p

    Only I Know Now, of Course, How to Deal With it, or Better to Deal With it: A Mixed Methods Phase II Study of a Cognitive and Behavioral Intervention for the Management of Episodic Breathlessness

    No full text
    Context. Episodic breathlessness is characterized by increased breathlessness intensity, and it is burdensome for patients. A vicious cycle of breathlessness-anxiety/panic-breathlessness leads to emergencies that can rarely be alleviated by drugs. Nonpharmacological interventions seem to be beneficial: Can a brief cognitive and behavioral intervention help patients to better manage episodic breathlessness? Objectives. To evaluate the feasibility, safety, acceptability, and potential effects of a brief cognitive and behavioral intervention for the management of episodic breathlessness. Methods. Between February 2019 and February 2020, 49 patients with life-limiting diseases suffering from episodic breathlessness were enrolled in the single-arm phase II study. The baseline assessment was followed by the one- to two-hour intervention. In weeks two, four, and six after the intervention, the outcomes (main outcome of potential effects: mastery of breathlessness) were assessed, and in week six, a qualitative interview, and the final assessment took place. A mixed-methods approach was used to evaluate mainly the feasibility, including interviewing informal carers. Results. 46/49 patients (24 female; 36 with COPD; mean age: 66.0 years) participated in the baseline assessment, 38 attended the intervention, 32 completed the final assessment, and 22 were interviewed. Study procedures and the intervention were feasible and mainly well accepted and patients did not experience burdens caused by it (28/32). In the interviews, patients described a positive change in their competencies in managing episodic breathlessness and feelings of anxiety during the episode. Mastery of breathlessness improved after the intervention. Conclusion. The brief cognitive and behavioral intervention and the study procedures are feasible, safe, and well accepted. We can describe a change for better management of episodic breathlessness in patients after the intervention, still, this needs to be evaluated in a Phase III trial for inclusion in the management of episodic breathlessness. (C) 2022 Published by Elsevier Inc. on behalf of American Academy of Hospice and Palliative Medicine

    Search for Scalar Diphoton Resonances in the Mass Range 6560065-600 GeV with the ATLAS Detector in pppp Collision Data at s\sqrt{s} = 8 TeVTeV

    No full text
    A search for scalar particles decaying via narrow resonances into two photons in the mass range 65–600 GeV is performed using 20.3fb120.3\text{}\text{}{\mathrm{fb}}^{-1} of s=8TeV\sqrt{s}=8\text{}\text{}\mathrm{TeV} pppp collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95% confidence level on the production cross section of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches

    Search for Higgs and ZZ Boson Decays to J/ψγJ/\psi\gamma and Υ(nS)γ\Upsilon(nS)\gamma with the ATLAS Detector

    No full text
    A search for the decays of the Higgs and ZZ bosons to J/ψγJ/\psi\gamma and Υ(nS)γ\Upsilon(nS)\gamma (n=1,2,3n=1,2,3) is performed with pppp collision data samples corresponding to integrated luminosities of up to 20.3fb120.3\mathrm{fb}^{-1} collected at s=8TeV\sqrt{s}=8\mathrm{TeV} with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above expected backgrounds and 95% CL upper limits are placed on the branching fractions. In the J/ψγJ/\psi\gamma final state the limits are 1.5×1031.5\times10^{-3} and 2.6×1062.6\times10^{-6} for the Higgs and ZZ bosons, respectively, while in the Υ(1S,2S,3S)γ\Upsilon(1S,2S,3S)\,\gamma final states the limits are (1.3,1.9,1.3)×103(1.3,1.9,1.3)\times10^{-3} and (3.4,6.5,5.4)×106(3.4,6.5,5.4)\times10^{-6}, respectively
    corecore