479 research outputs found
LISA data analysis: The monochromatic binary detection and initial guess problems
We consider the detection and initial guess problems for the LISA
gravitational wave detector. The detection problem is the problem of how to
determine if there is a signal present in instrumental data and how to identify
it. Because of the Doppler and plane-precession spreading of the spectral power
of the LISA signal, the usual power spectrum approach to detection will have
difficulty identifying sources. A better method must be found. The initial
guess problem involves how to generate {\it a priori} values for the parameters
of a parameter-estimation problem that are close enough to the final values for
a linear least-squares estimator to converge to the correct result. A useful
approach to simultaneously solving the detection and initial guess problems for
LISA is to divide the sky into many pixels and to demodulate the Doppler
spreading for each set of pixel coordinates. The demodulated power spectra may
then be searched for spectral features. We demonstrate that the procedure works
well as a first step in the search for gravitational waves from monochromatic
binaries.Comment: 8 pages, 8 figure
The information content of gravitational wave harmonics in compact binary inspiral
The nonlinear aspect of gravitational wave generation that produces power at
harmonics of the orbital frequency, above the fundamental quadrupole frequency,
is examined to see what information about the source is contained in these
higher harmonics. We use an order (4/2) post-Newtonian expansion of the
gravitational wave waveform of a binary system to model the signal seen in a
spaceborne gravitational wave detector such as the proposed LISA detector.
Covariance studies are then performed to determine the ultimate accuracy to be
expected when the parameters of the source are fit to the received signal. We
find three areas where the higher harmonics contribute crucial information that
breaks degeneracies in the model and allows otherwise badly-correlated
parameters to be separated and determined. First, we find that the position of
a coalescing massive black hole binary in an ecliptic plane detector, such as
OMEGA, is well-determined with the help of these harmonics. Second, we find
that the individual masses of the stars in a chirping neutron star binary can
be separated because of the mass dependence of the harmonic contributions to
the wave. Finally, we note that supermassive black hole binaries, whose
frequencies are too low to be seen in the detector sensitivity window for long,
may still have their masses, distances, and positions determined since the
information content of the higher harmonics compensates for the information
lost when the orbit-induced modulation of the signal does not last long enough
to be apparent in the data.Comment: 13 pages, 5 figure
ARIA 2016 : Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle
European Innovation Partnership on Active and Healthy Ageing Reference Site MACVIA-France, EU Structural and Development Fund Languedoc-Roussillon, ARIA.Peer reviewedPublisher PD
Gravitational radiation observations on the moon
A LaserâInterferometer GravitationalâWave Observatory (LIGO) is planned for operation in the United States, with two antennas separated by several thousand kilometers. Each antenna would incorporate laser interferometers with 4 km arm lengths, operating in vacuum. The frequency range covered initially would be from a few tens of Hz to a few kHz, with possible extension to lower frequencies later. Similar systems are likely to be constructed in Europe, and there is a possibility of at least one system in Asia or Australia. It will be possible to determine the direction to a gravitational wave source by measuring the difference in the arrival times at the various antennas for burst signals or the phase difference for short duration nearly periodic signals. The addition of an antenna on the Moon, operating in support of the Earthâbased antennas, would improve the angular resolution for burst signals by about a factor 50 in the plane containing the source, the Moon, and the Earth. This would be of major importance in studies of gravitational wave sources. There is also a possibility of somewhat lower noise at frequencies near 1 Hz for a lunar gravitational wave antenna, because of lower gravity gradient noise and microseismic noise on the Moon. However, for frequencies near 0.1 Hz and below, a 10^7 km laser gravitational wave antenna in solar orbit would be much more sensitive
LISA data analysis I: Doppler demodulation
The orbital motion of the Laser Interferometer Space Antenna (LISA) produces
amplitude, phase and frequency modulation of a gravitational wave signal. The
modulations have the effect of spreading a monochromatic gravitational wave
signal across a range of frequencies. The modulations encode useful information
about the source location and orientation, but they also have the deleterious
affect of spreading a signal across a wide bandwidth, thereby reducing the
strength of the signal relative to the instrument noise. We describe a simple
method for removing the dominant, Doppler, component of the signal modulation.
The demodulation reassembles the power from a monochromatic source into a
narrow spike, and provides a quick way to determine the sky locations and
frequencies of the brightest gravitational wave sources.Comment: 5 pages, 7 figures. References and new comments adde
Bounds on gravitational wave backgrounds from large distance clock comparisons
Our spacetime is filled with gravitational wave backgrounds that constitute a
fluctuating environment created by astrophysical and cosmological sources.
Bounds on these backgrounds are obtained from cosmological and astrophysical
data but also by analysis of ranging and Doppler signals from distant
spacecraft. We propose here a new way to set bounds on those backgrounds by
performing clock comparisons between a ground clock and a remote spacecraft
equipped with an ultra-stable clock, rather than only ranging to an onboard
transponder. This technique can then be optimized as a function of the signal
to be measured and the dominant noise sources, leading to significant
improvements on present bounds in a promising frequency range where different
theoretical models are competing. We illustrate our approach using the SAGAS
project which aims to fly an ultra stable optical clock in the outer solar
system.Comment: 10 pages, 8 figures, minor amendment
Space missions to detect the cosmic gravitational-wave background
It is thought that a stochastic background of gravitational waves was
produced during the formation of the universe. A great deal could be learned by
measuring this Cosmic Gravitational-wave Background (CGB), but detecting the
CGB presents a significant technological challenge. The signal strength is
expected to be extremely weak, and there will be competition from unresolved
astrophysical foregrounds such as white dwarf binaries. Our goal is to identify
the most promising approach to detect the CGB. We study the sensitivities that
can be reached using both individual, and cross-correlated pairs of space based
interferometers. Our main result is a general, coordinate free formalism for
calculating the detector response that applies to arbitrary detector
configurations. We use this general formalism to identify some promising
designs for a GrAvitational Background Interferometer (GABI) mission. Our
conclusion is that detecting the CGB is not out of reach.Comment: 22 pages, 7 figures, IOP style, References Adde
Testing the equivalence principle: why and how?
Part of the theoretical motivation for improving the present level of testing
of the equivalence principle is reviewed. The general rationale for optimizing
the choice of pairs of materials to be tested is presented. One introduces a
simplified rationale based on a trichotomy of competing classes of theoretical
models.Comment: 11 pages, Latex, uses ioplppt.sty, submitted to Class. Quantum Gra
- âŠ